دوره 8، شماره 2 - ( 5-1399 )                   جلد 8 شماره 2 صفحات 72-58 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bagheri F, Tarokh M J, Ziaratban M. Two-stage Skin Lesion Segmentation from Dermoscopic Images by Using Deep Neural Networks. Jorjani Biomed J 2020; 8 (2) :58-72
URL: http://goums.ac.ir/jorjanijournal/article-1-737-fa.html
Two-stage Skin Lesion Segmentation from Dermoscopic Images by Using Deep Neural Networks. فصلنامه علمی پژوهشی زیست پزشکی جرجانی. 1399; 8 (2) :58-72

URL: http://goums.ac.ir/jorjanijournal/article-1-737-fa.html


چکیده:   (8591 مشاهده)
Background and objective: Automatic semantic segmentation of skin lesions is one of the most important medical requirements in the diagnosis and treatment of skin cancer, and scientists always try to achieve more accurate lesion segmentation systems. Developing an accurate model for lesion segmentation helps in timely diagnosis and appropriate treatment.
Material and Methods: In this study, a two-stage deep learning-based method is presented for accurate segmentation of skin lesions. At the first stage, detection stage, an approximate location of the lesion in a dermoscopy is estimated using deep Yolo v2 network. A sub-image is cropped from the input dermoscopy by considering a margin around the estimated lesion bounding box and then resized to a predetermined normal size. DeepLab convolutional neural network is used at the second stage, segmentation stage, to extract the exact lesion area from the normalized image.
Results: A standard and well-known dataset of dermoscopic images, (ISBI) 2017 dataset, is used to evaluate the proposed method and compare it with the state-of-the-art methods. Our method achieved Jaccard value of 79.05%, which is 2.55% higher than the Jaccard of the winner of the ISIC 2017 challenge.
Conclusion: Experiments demonstrated that the proposed two-stage CNN-based lesion segmentation method outperformed other state-of-the-art methods on the well-known ISIB2017 dataset. High accuracy in detection stage is of most important. Using the detection stage based on Yolov2 before segmentation stage, DeepLab3+ structure with appropriate backbone network, data augmentation, and additional modes of input images are the main reasons of the significant improvement.
متن کامل [PDF 1223 kb]   (2699 دریافت)    
نوع مقاله: تحقیقی | موضوع مقاله: آمار زیستی
دریافت: 1398/10/11 | پذیرش: 1399/3/11 | انتشار: 1399/4/11

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله زیست پزشکی جرجانی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Jorjani Biomedicine Journal

Designed & Developed by : Yektaweb