Volume 6, Issue 4 (Winter 2018)                   Jorjani Biomed J 2018, 6(4): 62-77 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aman Mohammadi M, Rostami M R, Raeisi M, Tabibi Azar M. Production of Electrospun Nanofibers from Food Proteins and Polysaccharides and Their Applications in Food and Drug Sciences. Jorjani Biomed J. 2018; 6 (4) :62-77
URL: http://goums.ac.ir/jorjanijournal/article-1-581-en.html
1- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
2- Cereal Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
3- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran , mahnaz_tabibiazar@yahoo.com
Abstract:   (466 Views)
Preparation of nano-microfibers from biopolymers (e.g., proteins and polysaccharides) by using electrospinning technology has been considered by researchers due to the formation of fibers or particles at the nano and micrometer scales, high porosity level, adjustable dewatering behavior, and special mechanical behavior. These products can be used in the microencapsulation of bioactive compounds, stabilization of enzymes and smart packaging. In the electrospinning method, a high voltage is used to create a nanofibers-particles. When the electric field overcomes the surface tension of the droplet, a jet exits the polymeric solution and is formed along the collector surface as it stretches toward the collector panel of the nanofiber. Parameters including molecular weight and polymer microstructure characteristics such as electrical conductivity, viscosity, surface tension, and the electrical potential applied by the device, solution flow rate, distance between the tip of the needle and the collector plate and sometimes the material of the collector plate are effective in the formation of electrospun fibers and particles. In this review, we discussed and evaluated the production stages, the strengths and weaknesses of the fibers produced from proteins and polysaccharides, and their functional properties and potentials, especially in food and drug sciences.
 
Full-Text [PDF 1008 kb]   (109 Downloads)    
Type of Article: Review Article |
Received: 2018/06/23 | Revised: 2018/09/2 | Accepted: 2018/12/1

References
1. Jacobsen C, Garcia-Moreno PJ, Mendes AC, Mateiu RV, Chronakis IS. Use of Electrospinning for Encapsulation of Sensitive Bioactive Compounds and Applications in Food. Annual review of food science and technology. 2018;9(1). [DOI:10.1146/annurev-food-030117-012348]
2. Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry. 2018;11(8):1165-88. [DOI:10.1016/j.arabjc.2015.11.015]
3. Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition. 2007;46(30):5670-703. [DOI:10.1002/anie.200604646]
4. Ghorani B, Tucker N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids. 2015;51:227-40. [DOI:10.1016/j.foodhyd.2015.05.024]
5. Schiffman JD, Schauer CL. A review: electrospinning of biopolymer nanofibers and their applications. Polymer reviews. 2008;48(2):317-52. [DOI:10.1080/15583720802022182]
6. Stijnman AC, Bodnar I, Tromp RH. Electrospinning of food-grade polysaccharides. Food Hydrocolloids. 2011;25(5):1393-8. [DOI:10.1016/j.foodhyd.2011.01.005]
7. Wongsasulak S, Patapeejumruswong M, Weiss J, Supaphol P, Yoovidhya T. Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. Journal of Food Engineering. 2010;98(3):370-6. [DOI:10.1016/j.jfoodeng.2010.01.014]
8. Ramazani S, Rostami M, Raeisi M, Tabibiazar M, Ghorbani M. Fabrication of foodgrade nanofibers of whey protein Isolate-Guar gum using the electrospinning method. Food Hydrocolloids. 2019;90:99-104. [DOI:10.1016/j.foodhyd.2018.12.010]
9. Alharbi HF, Luqman M, Khalil KA, Elnakady YA, Abd-Elkader OH, Rady AM, et al. Fabrication of core-shell structured nanofibers of poly (lactic acid) and poly (vinyl alcohol) by coaxial electrospinning for tissue engineering. European Polymer Journal. 2018;98:483-91. [DOI:10.1016/j.eurpolymj.2017.11.052]
10. Pitkowski A, Durand D, Nicolai T. Structure and dynamical mechanical properties of suspensions of sodium caseinate. Journal of Colloid and Interface Science. 2008;326(1):96- 102. [DOI:10.1016/j.jcis.2008.07.003]
11. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances. 2010;28(3):325-47. [DOI:10.1016/j.biotechadv.2010.01.004]
12. Piccirillo G, Ditaranto MV, Feuerer NF, Berrio DAC, Brauchle EM, Pepe A, et al. Noninvasive characterization of hybrid gelatin: poly-llactide electrospun scaffolds using second harmonic generation and multiphoton imaging. Journal of Materials Chemistry B. 2018;6(40):6399-412. [DOI:10.1039/C8TB02026D]
13. Middleton R, Li X, Shepherd J, Li Z, Wang W, Best SM, et al. Near‐Field Electrospinning Patterning Polycaprolactone and Polycaprolactone/Collagen Interconnected Fiber Membrane. Macromolecular Materials and Engineering. 2018;303(2):1700463. [DOI:10.1002/mame.201700463]
14. Sullivan ST, Tang C, Kennedy A, Talwar S, Khan SA. Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocolloids. 2014;35:36-50. [DOI:10.1016/j.foodhyd.2013.07.023]
15. Adeli H, Khorasani MT, Parvazinia M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. International journal of biological macromolecules. 2019;122:238-54. [DOI:10.1016/j.ijbiomac.2018.10.115]
16. Kuntzler SG, Costa JAV, de Morais MG. Development of electrospun nanofibers containing chitosan/PEO blend and phenolic compounds with antibacterial activity. International journal of biological macromolecules. 2018. [DOI:10.1016/j.ijbiomac.2018.05.224]
17. Gomes S, Rodrigues G, Martins G, Roberto M, Mafra M, Henriques C, et al. In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: a comparative study. Materials Science and Engineering: C. 2015;46:348-58. [DOI:10.1016/j.msec.2014.10.051]
18. Huang GP, Shanmugasundaram S, Masih P, Pandya D, Amara S, Collins G, et al. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. Journal of Biomedical Materials Research Part A. 2015;103(2):762-71. [DOI:10.1002/jbm.a.35222]
19. Torres-Giner S, Ocio MJ, Lagaron JM. Novel antimicrobial ultrathin structures of zein/chitosan blends obtained by electrospinning. Carbohydrate Polymers. 2009;77(2):261-6. [DOI:10.1016/j.carbpol.2008.12.035]
20. Zhang Y, Venugopal J, Huang Z-M, Lim C, Ramakrishna S. Crosslinking of the electrospun gelatin nanofibers. Polymer. 2006;47(8):2911-7. [DOI:10.1016/j.polymer.2006.02.046]
21. Erdogan I, Demir M, Bayraktar O. Olive leaf extract as a crosslinking agent for the preparation of electrospun zein fibers. Journal of Applied Polymer Science. 2015;132(4). [DOI:10.1002/app.41338]
22. Neal RA, McClugage III SG, Link MC, Sefcik LS, Ogle RC, Botchwey EA. Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes. Tissue Engineering Part C: Methods. 2008;15(1):11-21. [DOI:10.1089/ten.tec.2007.0366]
23. Rahmani S, Tabandeh F, Faghihi S, Amoabediny G, Shakibaie M, Noorani B, et al. Fabrication and characterization of poly (εcaprolactone)/gelatin nanofibrous scaffolds for retinal tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials. 2018;67(1):27-35. [DOI:10.1080/00914037.2017.1297939]
24. Mahmood K, Kamilah H, Sudesh K, Karim AA, Ariffin F. Study of electrospun fish gelatin nanofilms from benign organic acids as solvents. Food Packaging and Shelf Life. 2019;19:66-75. [DOI:10.1016/j.fpsl.2018.11.018]
25. Kwak HW, Shin M, Lee JY, Yun H, Song DW, Yang Y, et al. Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning. International journal of biological macromolecules. 2017;102:1092-103. [DOI:10.1016/j.ijbiomac.2017.04.087]
26. Son SR, Franco RA, Bae SH, Min YK, Lee BT. Electrospun PLGA/gelatin fibrous tubes for the application of biodegradable intestinal stent in rat model. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2013;101(6):1095-105. [DOI:10.1002/jbm.b.32923]
27. Ramanathan G, Singaravelu S, Raja M, Nagiah N, Padmapriya P, Ruban K, et al. Fabrication and characterization of a collagen coated electrospun poly (3-hydroxybutyric acid)- gelatin nanofibrous scaffold as a soft bio-mimetic material for skin tissue engineering applications. RSC Advances. 2016;6(10):7914-22. [DOI:10.1039/C5RA19529B]
28. Elamparithi A, Punnoose AM, Kuruvilla S. Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering. Artificial cells, nanomedicine, and biotechnology. 2016;44(5):1318-25. [DOI:10.3109/21691401.2015.1029629]
29. Liu S-J, Kau Y-C, Chou C-Y, Chen J-K, Wu R-C, Yeh W-L. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. Journal of Membrane Science. 2010;355(1-2):53-9. [DOI:10.1016/j.memsci.2010.03.012]
30. Rath G, Hussain T, Chauhan G, Garg T, Goyal AK. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. Journal of drug targeting. 2016;24(6):520-9. [DOI:10.3109/1061186X.2015.1095922]
31. Wang Y, Zhang W, Yuan J, Shen J. Differences in cytocompatibility between collagen, gelatin and keratin. Materials Science and Engineering: C. 2016;59:30-4. [DOI:10.1016/j.msec.2015.09.093]
32. Fang Q, Zhu M, Yu S, Sui G, Yang X. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials. Materials Science and Engineering: B. 2016;214:1-10. [DOI:10.1016/j.mseb.2016.08.004]
33. Ramji K, Shah RN. Electrospun soy protein nanofiber scaffolds for tissue regeneration. Journal of biomaterials applications. 2014;29(3):411-22. [DOI:10.1177/0885328214530765]
34. Aytac Z, Ipek S, Durgun E, Uyar T. Antioxidant electrospun zein nanofibrous web encapsulating quercetin/cyclodextrin inclusion complex. Journal of Materials Science. 2018;53(2):1527-39. [DOI:10.1007/s10853-017-1580-x]
35. Altan A, Aytac Z, Uyar T. Carvacrol loaded electrospun fibrous films from zein and poly (lactic acid) for active food packaging. Food Hydrocolloids. 2018;81:48-59. [DOI:10.1016/j.foodhyd.2018.02.028]
36. Moomand K, Lim L-T. Oxidative stability of encapsulated fish oil in electrospun zein fibres. Food research international. 2014;62:523-32. [DOI:10.1016/j.foodres.2014.03.054]
37. Moomand K, Lim L-T. Properties of encapsulated fish oil in electrospun zein fibres under simulated in vitro conditions. Food and bioprocess technology. 2015;8(2):431-44. [DOI:10.1007/s11947-014-1414-7]
38. Aytac Z, Ipek S, Durgun E, Tekinay T, Uyar T. Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food chemistry. 2017;233:117-24. [DOI:10.1016/j.foodchem.2017.04.095]
39. Alhusein N, Blagbrough IS, Beeton ML, Bolhuis A, Paul A. Electrospun zein/PCL fibrous matrices release tetracycline in a controlled manner, killing Staphylococcus aureus both in biofilms and ex vivo on pig skin, and are compatible with human skin cells. Pharmaceutical research. 2016;33(1):237-46. [DOI:10.1007/s11095-015-1782-3]
40. Vogt L, Liverani L, Roether JA, Boccaccini AR. Electrospun Zein Fibers Incorporating Poly (glycerol sebacate) for Soft Tissue Engineering. Nanomaterials. 2018;8(3):150. [DOI:10.3390/nano8030150]
41. Aceituno-Medina M, Mendoza S, Lagaron JM, López-Rubio A. Photoprotection of folic acid upon encapsulation in food-grade amaranth (Amaranthus hypochondriacus L.) protein isolate-Pullulan electrospun fibers. LWTFood Science and Technology. 2015;62(2):970-5. [DOI:10.1016/j.lwt.2015.02.025]
42. Blanco-Padilla A, López-Rubio A, Loarca-Piña G, Gómez-Mascaraque LG, Mendoza S. Characterization, release and antioxidant activity of curcumin-loaded amaranth-pullulan electrospun fibers. LWT-Food Science and Technology. 2015;63(2):1137-44. [DOI:10.1016/j.lwt.2015.03.081]
43. Aceituno-Medina M, Mendoza S, Lagaron JM, López-Rubio A. Development and characterization of food-grade electrospun fibers from amaranth protein and pullulan blends. Food research international. 2013;54(1):667-74. [DOI:10.1016/j.foodres.2013.07.055]
44. Xie J, Hsieh Y-L. Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. Journal of Materials Science. 2003;38(10):2125- 33. [DOI:10.1023/A:1023763727747]
45. Tomasula P, Sousa A, Liou S-C, Li R, Bonnaillie L, Liu L. Electrospinning of casein/pullulan blends for food-grade applications. Journal of dairy science. 2016;99(3):1837-45. [DOI:10.3168/jds.2015-10374]
46. Colín-Orozco J, Zapata-Torres M, Rodríguez-Gattorno G, Pedroza-Islas R. Properties of poly (ethylene oxide)/whey protein isolate nanofibers prepared by electrospinning. Food Biophysics. 2015;10(2):134-44. [DOI:10.1007/s11483-014-9372-1]
47. Verdugo M, Lim L-T, Rubilar M. Electrospun protein concentrate fibers from microalgae residual biomass. Journal of Polymers and the Environment. 2014;22(3):373-83. [DOI:10.1007/s10924-014-0678-3]
48. Stephansen K, Chronakis IS, Jessen F. Bioactive electrospun fish sarcoplasmic proteins as a drug delivery system. Colloids and Surfaces B: Biointerfaces. 2014;122:158-65. [DOI:10.1016/j.colsurfb.2014.06.053]
49. Stephansen K, García-Díaz M, Jessen F, Chronakis IS, Nielsen HM. Bioactive proteinbased nanofibers interact with intestinal biological components resulting in transepithelial permeation of a therapeutic protein. International journal of pharmaceutics. 2015;495(1):58-66. [DOI:10.1016/j.ijpharm.2015.08.076]
50. Stephansen K, García-Díaz M, Jessen F, Chronakis IS, Nielsen HM. Interactions between surfactants in solution and electrospun protein Fibers: Effects on release behavior and fiber properties. Molecular pharmaceutics. 2016;13(3):748-55. [DOI:10.1021/acs.molpharmaceut.5b00614]
51. Chien KB, Shah RN. Novel soy protein scaffolds for tissue regeneration: material characterization and interaction with human mesenchymal stem cells. Acta biomaterialia. 2012;8(2):694-703. [DOI:10.1016/j.actbio.2011.09.036]
52. Olami H, Zilberman M. Microstructure and in vitro cellular response to novel soy proteinbased porous structures for tissue regeneration applications. Journal of biomaterials applications. 2016;30(7):1004-15. [DOI:10.1177/0885328215614713]
53. Aydogdu A, Yildiz E, Ayhan Z, Aydogdu Y, Sumnu G, Sahin S. Nanostructured Poly (lactic acid)/Soy Protein/HPMC films by electrospinning for potential applications in food industry. European Polymer Journal. 2019. [DOI:10.1016/j.eurpolymj.2019.01.006]
54. Hong H, Tronstad ZC, Yang Y, Green MD. Characterization of PVC‐soy protein nonwoven mats prepared by electrospinning. AIChE Journal. 2018;64(7):2737-44. [DOI:10.1002/aic.16109]
55. Vega-Lugo A-C, Lim L-T. Electrospinning of soy protein isolate nanofibers. Journal of Biobased Materials and Bioenergy. 2008;2(3):223-30. [DOI:10.1166/jbmb.2008.408]
56. Wongkanya R, Chuysinuan P, Pengsuk C, Techasakul S, Lirdprapamongkol K, Svasti J, et al. Electrospinning of alginate/soy protein isolated nanofibers and their release characteristics for biomedical applications. Journal of Science: Advanced Materials and Devices. 2017;2(3):309- 16. [DOI:10.1016/j.jsamd.2017.05.010]
57. Kumar NS, Santhosh C, Sudakaran SV, Deb A, Raghavan V, Venugopal V, et al. Electrospun polyurethane and soy protein nanofibres for wound dressing applications. IET Nanobiotechnology. 2017.
58. Zhan J, Lan P. The review on electrospun gelatin fiber scaffold. Journal of Research Updates in Polymer Science. 2013;1(2):59-71.
59. Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer. 2005;46(14):5094-102. [DOI:10.1016/j.polymer.2005.04.040]
60. Tan RP, Chan AH, Lennartsson K, Miravet MM, Lee BS, Rnjak-Kovacina J, et al. Integration of induced pluripotent stem cellderived endothelial cells with polycaprolactone/gelatin-based electrospun scaffolds for enhanced therapeutic angiogenesis. Stem cell research & therapy. 2018;9(1):70. [DOI:10.1186/s13287-018-0824-2]
61. Lawton JW. Zein: A history of processing and use. Cereal Chemistry. 2002;79(1):1-18. [DOI:10.1094/CCHEM.2002.79.1.1]
62. Shukla R, Cheryan M. Zein: the industrial protein from corn. Industrial crops and products. 2001;13(3):171-92. [DOI:10.1016/S0926-6690(00)00064-9]
63. Torres-Giner S, Gimenez E, Lagarón JM. Characterization of the morphology and thermal properties of zein prolamine nanostructures obtained by electrospinning. Food Hydrocolloids. 2008;22(4):601-14. [DOI:10.1016/j.foodhyd.2007.02.005]
64. Kasaai MR. Zein and zein-based nanomaterials for food and nutrition applications: A review. Trends in Food Science & Technology. 2018. [DOI:10.1016/j.tifs.2018.07.015]
65. Wang Y, Chen L. Electrospinning of prolamin proteins in acetic acid: the effects of protein conformation and aggregation in solution. Macromolecular Materials and Engineering. 2012;297(9):902-13. [DOI:10.1002/mame.201100410]
66. Wang Y, Zhang C-l, Zhang Q, Li P. Composite electrospun nanomembranes of fish scale collagen peptides/chito-oligosaccharides: antibacterial properties and potential for wound dressing. International journal of nanomedicine. 2011;6:667. [DOI:10.2147/IJN.S17547]
67. Wang H, Hao L, Wang P, Chen M, Jiang S, Jiang S. Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocolloids. 2017;63:437-46. [DOI:10.1016/j.foodhyd.2016.09.028]
68. Aceituno-Medina M, Mendoza S, Rodríguez BA, Lagaron JM, López-Rubio A. Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. Journal of Functional Foods. 2015;12:332- 41. [DOI:10.1016/j.jff.2014.11.028]
69. Ewart HS, Dennis D, Potvin M, Tiller C, Fang L-h, Zhang R, et al. Development of a salmon protein hydrolysate that lowers blood pressure. European Food Research and Technology. 2009;229(4):561-9. [DOI:10.1007/s00217-009-1083-3]
70. Girgih AT, He R, Hasan FM, Udenigwe CC, Gill TA, Aluko RE. Evaluation of the in vitro antioxidant properties of a cod (Gadus morhua) protein hydrolysate and peptide fractions. Food chemistry. 2015;173:652-9. [DOI:10.1016/j.foodchem.2014.10.079]
71. Himaya S, Ngo D-H, Ryu B, Kim S-K. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chemistry. 2012;132(4):1872-82. [DOI:10.1016/j.foodchem.2011.12.020]
72. Pilon G, Ruzzin J, Rioux L-E, Lavigne C, White PJ, Frøyland L, et al. Differential effects of various fish proteins in altering body weight, adiposity, inflammatory status, and insulin sensitivity in high-fat-fed rats. Metabolism. 2011;60(8):1122-30. [DOI:10.1016/j.metabol.2010.12.005]
73. Farvin KS, Andersen LL, Nielsen HH, Jacobsen C, Jakobsen G, Johansson I, et al. Antioxidant activity of Cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion. Food chemistry. 2014;149:326-34. [DOI:10.1016/j.foodchem.2013.03.075]
74. Sett S, Stephansen K, Yarin A. Solutionblown nanofiber mats from fish sarcoplasmic protein. Polymer. 2016;93:78-87. [DOI:10.1016/j.polymer.2016.04.019]
75. Fabra MJ, López-Rubio A, Lagaron JM. Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications. Food Hydrocolloids. 2016;55:11-8. [DOI:10.1016/j.foodhyd.2015.10.026]
76. Drosou C, Krokida M, Biliaderis CG. Composite pullulan-whey protein nanofibers made by electrospinning: Impact of process parameters on fiber morphology and physical properties. Food Hydrocolloids. 2017. [DOI:10.1016/j.foodhyd.2017.11.014]
77. López-Rubio A, Sanchez E, Wilkanowicz S, Sanz Y, Lagaron JM. Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids. 2012;28(1):159-67. [DOI:10.1016/j.foodhyd.2011.12.008]
78. Turan D, Gibis M, Gunes G, Baier SK, Weiss J. The impact of the molecular weight of dextran on formation of whey protein isolate (WPI)-dextran conjugates in fibers produced by needleless electrospinning after annealing. Food & function. 2018;9(4):2193-200. [DOI:10.1039/C7FO02041D]
79. Ng-Kwai-Hang K, Hayes J, Moxley J, Monardes H. Association of genetic variants of casein and milk serum proteins with milk, fat, and protein production by dairy cattle. Journal of dairy science. 1984;67(4):835-40. [DOI:10.3168/jds.S0022-0302(84)81374-0]
80. Santos C, Silva CJ, Büttel Z, Guimarães R, Pereira SB, Tamagnini P, et al. Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydrate polymers. 2014;99:584-92. [DOI:10.1016/j.carbpol.2013.09.008]
81. Kong L, Ziegler GR. Fabrication of pure starch fibers by electrospinning. Food Hydrocolloids. 2014;36:20-5. [DOI:10.1016/j.foodhyd.2013.08.021]
82. Mendes AC, Stephansen K, Chronakis IS. Electrospinning of food proteins and polysaccharides. Food Hydrocolloids. 2016;30:1e16.
83. Pakravan M, Heuzey M-C, Ajji A. Core- shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromolecules. 2012;13(2):412-21. [DOI:10.1021/bm201444v]
84. Sun K, Li Z. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polymer Letters. 2011;5(4). [DOI:10.3144/expresspolymlett.2011.34]
85. Sangsanoh P, Suwantong O, Neamnark A, Cheepsunthorn P, Pavasant P, Supaphol P. In vitro biocompatibility of electrospun and solventcast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. European Polymer Journal. 2010;46(3):428-40. [DOI:10.1016/j.eurpolymj.2009.10.029]
86. Lancuški A, Vasilyev G, Putaux J-L, Zussman E. Rheological properties and electrospinnability of high-amylose starch in formic acid. Biomacromolecules. 2015;16(8):2529-36. [DOI:10.1021/acs.biomac.5b00817]
87. Kong L, Ziegler GR. Formation of starchguest inclusion complexes in electrospun starch fibers. Food hydrocolloids. 2014;38:211-9. [DOI:10.1016/j.foodhyd.2013.12.018]
88. Kong L, Ziegler GR. Rheological aspects in fabricating pullulan fibers by electro-wetspinning. Food Hydrocolloids. 2014;38:220-6. [DOI:10.1016/j.foodhyd.2013.12.016]
89. Xiao Q, Lim L-T. Pullulan-alginate fibers produced using free surface electrospinning. International journal of biological macromolecules. 2018;112:809-17. [DOI:10.1016/j.ijbiomac.2018.02.005]
90. Sun XB, Jia D, Kang WM, Cheng BW, Li YB, editors. Research on electrospinning process of pullulan nanofibers. Applied Mechanics and Materials; 2013: Trans Tech Publ.
91. Guo C, Zhou L, Lv J. Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flourpolypropylene composites. Polymers & Polymer Composites. 2013;21(7):449. [DOI:10.1177/096739111302100706]
92. Sarhan WA, Azzazy HM. High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects. Carbohydrate polymers. 2015;122:135-43. [DOI:10.1016/j.carbpol.2014.12.051]
93. Nguyen TTT, Chung OH, Park JS. Coaxial electrospun poly (lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity. Carbohydrate Polymers. 2011;86(4):1799-806. [DOI:10.1016/j.carbpol.2011.07.014]
94. Balan V, Verestiuc L. Strategies to improve chitosan hemocompatibility: A review. European Polymer Journal. 2014;53:171-88. [DOI:10.1016/j.eurpolymj.2014.01.033]
95. Jayakumar R, Menon D, Manzoor K, Nair S, Tamura H. Biomedical applications of chitin and chitosan based nanomaterials-A short review. Carbohydrate Polymers. 2010;82(2):227- 32. [DOI:10.1016/j.carbpol.2010.04.074]
96. Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. International journal of biological macromolecules. 2014;64:353-67. [DOI:10.1016/j.ijbiomac.2013.12.017]
97. Rieger KA, Birch NP, Schiffman JD. Electrospinning chitosan/poly (ethylene oxide) solutions with essential oils: Correlating solution rheology to nanofiber formation. Carbohydrate polymers. 2016;139:131-8. [DOI:10.1016/j.carbpol.2015.11.073]
98. Bösiger P, Tegl G, Richard IM, Le Gat L, Huber L, Stagl V, et al. Enzyme functionalized electrospun chitosan mats for antimicrobial treatment. Carbohydrate polymers. 2018;181:551- 9. [DOI:10.1016/j.carbpol.2017.12.002]
99. Wen P, Zhu D-H, Wu H, Zong M-H, Jing Y-R, Han S-Y. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control. 2016;59:366-76. [DOI:10.1016/j.foodcont.2015.06.005]
100. Kohsari I, Shariatinia Z, Pourmortazavi SM. Antibacterial electrospun chitosan- polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles. Carbohydrate polymers. 2016;140:287-98. [DOI:10.1016/j.carbpol.2015.12.075]
101. Jin S, Li J, Wang J, Jiang J, Zuo Y, Li Y, et al. electrospun silver ion-loaded calcium phosphate/chitosan antibacterial composite fibrous membranes for guided bone regeneration. International journal of nanomedicine. 2018;13:4591. [DOI:10.2147/IJN.S167793]
102. Dhurai B, Saraswathy N, Maheswaran R, Sethupathi P, Vanitha P, Vigneshwaran S, et al. Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics. Frontiers of Materials Science. 2013;7(4):350-61. [DOI:10.1007/s11706-013-0222-8]
103. Charernsriwilaiwat N, Opanasopit P, Rojanarata T, Ngawhirunpat T. Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. International Journal of Pharmaceutics. 2012;427(2):379-84. [DOI:10.1016/j.ijpharm.2012.02.010]
104. Kong L, Ziegler GR. Role of molecular entanglements in starch fiber formation by electrospinning. Biomacromolecules. 2012;13(8):2247-53. [DOI:10.1021/bm300396j]
105. Aydogdu A, Sumnu G, Sahin S. A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: Morphology and physicochemical properties. Carbohydrate polymers. 2018;181:234-46. [DOI:10.1016/j.carbpol.2017.10.071]
106. Nie H, He A, Zheng J, Xu S, Li J, Han CC. Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules. 2008;9(5):1362-5. [DOI:10.1021/bm701349j]
107. Bonino CA, Krebs MD, Saquing CD, Jeong SI, Shearer KL, Alsberg E, et al. Electrospinning alginate-based nanofibers: From blends to crosslinked low molecular weight alginate-only systems. Carbohydrate Polymers. 2011;85(1):111-9. [DOI:10.1016/j.carbpol.2011.02.002]
108. Reddy N, Yang Y. Innovative bio bers from renewable resources: Springer; 2015. [DOI:10.1007/978-3-662-45136-6]
109. Alborzi S, Lim L-T, Kakuda Y. Encapsulation of folic acid and its stability in sodium alginate-pectin-poly (ethylene oxide) electrospun fibres. Journal of microencapsulation. 2013;30(1):64-71. [DOI:10.3109/02652048.2012.696153]
110. Lindman B, Karlström G, Stigsson L. On the mechanism of dissolution of cellulose. Journal of Molecular Liquids. 2010;156(1):76-81. [DOI:10.1016/j.molliq.2010.04.016]
111. Frey MW. Electrospinning cellulose and cellulose derivatives. Polymer Reviews. 2008;48(2):378-91. [DOI:10.1080/15583720802022281]
112. Rezaei A, Nasirpour A, Fathi M. Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Comprehensive Reviews in Food Science and Food Safety. 2015;14(3):269-84. [DOI:10.1111/1541-4337.12128]
113. Huang X-J, Chen P-C, Huang F, Ou Y, Chen M-R, Xu Z-K. Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. Journal of Molecular Catalysis B: Enzymatic. 2011;70(3):95-100. [DOI:10.1016/j.molcatb.2011.02.010]
114. Wang X, Kim Y-G, Drew C, Ku B-C, Kumar J, Samuelson LA. Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors. Nano Letters. 2004;4(2):331-4. [DOI:10.1021/nl034885z]
115. Unnithan AR, Barakat NA, Pichiah PT, Gnanasekaran G, Nirmala R, Cha Y-S, et al. Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl. Carbohydrate polymers. 2012;90(4):1786-93. [DOI:10.1016/j.carbpol.2012.07.071]
116. Jiang H, Fang D, Hsiao BS, Chu B, Chen W. Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules. 2004;5(2):326-33. [DOI:10.1021/bm034345w]
117. Ritcharoen W, Thaiying Y, Saejeng Y, Jangchud I, Rangkupan R, Meechaisue C, et al. Electrospun dextran fibrous membranes. Cellulose. 2008;15(3):435-44. [DOI:10.1007/s10570-008-9199-3]
118. Xu F, Weng B, Gilkerson R, Materon LA, Lozano K. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydrate polymers. 2015;115:16-24. [DOI:10.1016/j.carbpol.2014.08.081]
119. Islam MS, Akter N, Karim MR. Preparation of superhydrophobic membranes by electrospinning of fluorinated silane functionalized pullulan. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010;362(1):117-20. [DOI:10.1016/j.colsurfa.2010.04.004]
120. Fuenmayora CA, Mascheronia E, Cosioa MS, Piergiovannia L, Benedettia S, Ortenzic M, et al. Encapsulation of R-(+)-limonene in edible electrospun nanofibers. Chemical Engineering. 2013;32

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2019 All Rights Reserved | Jorjani Biomedicine Journal

Designed & Developed by : Yektaweb