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Abstract 
Preparation of nano-microfibers from biopolymers (e.g., proteins and polysaccharides) 
by using electrospinning technology has been considered by researchers due to the 
formation of fibers or particles at the nano and micrometer scales, high porosity level, 
adjustable dewatering behavior, and special mechanical behavior. These products can be 
used in the microencapsulation of bioactive compounds, stabilization of enzymes and 
smart packaging. In the electrospinning method, a high voltage is used to create a 
nanofibers-particles. When the electric field overcomes the surface tension of the droplet, 
a jet exits the polymeric solution and is formed along the collector surface as it stretches 
toward the collector panel of the nanofiber. Parameters including molecular weight and 
polymer microstructure characteristics such as electrical conductivity, viscosity, surface 
tension, and the electrical potential applied by the device, solution flow rate, distance 
between the tip of the needle and the collector plate and sometimes the material of the 
collector plate are effective in the formation of electrospun fibers and particles. In this 
review, we discussed and evaluated the production stages, the strengths and weaknesses 
of the fibers produced from proteins and polysaccharides, and their functional properties 
and potentials, especially in food and drug sciences. 
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Introduction 

Electrospinning is an electro hydro dynamic 
process used to produce nano-microscopic 
nanoscale fibers, in which the electrical field 
is applied to a biopolymer solution to produce 
nanofiber-particle. Electrospinning consists of 
several simple parts, including a syringe, 
syringe pump, high voltage source, and 
collector plate. In this method, the polymer 
solution is charged under the electric field, 
and when the repulsive force of unlike 
charges overcomes the surface tensile force, a 
jet of polymer particles is guided from the tip 
of the needle to the collector plate. The jet 
moves rotationally and the solvent evaporates 
during the movement, which leads to the 
formation of the fibers-particles on the 
surface of the collector plate (1, 2). Effective 
parameters in the electrospinning process are 
divided into two groups: 1- parameters related 
to polymer solvent properties (molecular 
weight, conductivity coefficient, surface 
tension and viscosity), and 2- parameters 
related to the process (applied voltage, needle 
gap to collector plate, solution flow rate, and 
material of the plate collector) (3).  

The properties of the polymeric solution have 
the most effect on the electrospinning and the 
fiber structure obtained. The first requirement 
for the electrospinning process is having a 
solution with electrospinning capabilities. The 
diameter of the fiber obtained increases by the 
elevation of the solution’s viscosity. In 
addition, the increase of the electrical 
conductivity increases the efficiency of 
electrospinning. The possibility of involving 
of the chains and their electrospinning 
increases by an elevation in the molecular 
weight. Another important factor affecting the 
electrospinning process is those applied by 

the device to the electrospinning current. 
Considering the applied force resultant, the 
increase of voltage leads to an increase or 
decrease of fiber diameter. Increase of the 
solution current results in increased fiber 
diameter (4). Owing to their unique features 
(e.g., high surface-to-volume ratio, high 
porosity, adjustable dewatering behavior, and 
mechanical behavior), the fiber obtained by 
electrospinning can be used in various fields, 
such as medicine, smart drug delivery, food 
industry, and tissue engineering (5). 

In the electrospinning process, synthetic 
polymers and biopolymers (proteins and 
polysaccharides) can be used to produce 
fibers. The increasing concern of researchers 
regarding the use of synthetic polymers due to 
their risks and effects on human health has 
attracted the attention of scholars to more use 
of biopolymers. Several biopolymers have 
been tested for fiber production via 
electrospinning (6, 7). There are many 
variations in the use of biopolymers in the 
electrospinning process, in a way that several 
biopolymers can be used as a combination, 
which is carried out by applying a solution 
containing several compounds (8). In studies 
conducted on a mixture of polymers for 
electrospinning, multiple systems, and core-
shell structures have been significantly 
considered for food and pharmaceutical 
applications (9). In the present research, we 
evaluated the electrospinning of food 
biopolymers, including proteins and 
polysaccharides, important parameters 
involved in their electrospinning, and the 
main application of these products. 

2. Electrospinning of Protein Fibers  

The presence of the third and fourth structures 
that prevent their chains from being pulled in 
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the form of a chain complicates the 
electrospinning of proteins. In addition, 
compared to stranded proteins, spherical 
proteins have a low ability to be pulled during 
the electrospinning process due to their 
significantly low interaction with each other. 
To increase the electrospinning potential of 
proteins, they must be completely dissolved 
in the solvent and their secondary structures 
must be denatured. While the electrospinning 
of casein seems easy due to its spiral 
structure, there is no electrospinning ability in 
aqueous solutions due to the formation of 
casein clusters after dissolving in water (10). 

As mentioned, proteins must be completely 
solved in the solvent and denatured in order to 
have pullability during the electrospinning 
process (11). With high solubility, solvents 
can cause the denaturation and 
electrospinning of proteins by destructing the 
bonds of the third and fourth structures. The 
electrospinning of gelatin and collagen can be 
carried out using solvents such as Hexafluoro-
2-propanol (HFP) or acidic solutions (12, 13). 
Application of carrier polymer is another 
method used for electrospinning of proteins. 
Generally, carrier polymer is a polymer that 
has electrospinning ability and can give the 
electrospinning ability to protein by being 
added to it without the protein having this 
ability itself. An example of a polymer with a 
high electrospinning ability is polyvinyl 
alcohol, which gives the electrospinning 
ability in combination with soy protein isolate 
(14, 15). 

For proteins used in medical applications, 
polyvinyl alcohol and polyethylene oxide are 
often selected as carrier polymers (15, 16). 
Another method for electrospinning of 
proteins is the application of cross linkers, 
which cause the formation of different 
properties in the fiber and include natural and 

synthesis linkers, such as Genipin, 
glutaraldehyde, N-3-dimethylaminopropyl-n-
ethylcarbodiimide hydrochloride (EDC), and 
EDC with N-hydroxy sulfo succinimide. Use 
of crosslinkers in gelatin electrospinning 
increases the diameter and leads to smearing, 
ultimately increasing the stability of the 
produced fibers. Another advantage of using 
polymer carrier and crosslinkers is the 
improvement of mechanical stretching and 
fiber stability (17, 18). 

There are several crosslinkers that create 
different features in fibers. The effect of 
natural and synthetic crosslinkers, such as 
genipin, glutaraldehyde, N3 
dimethylaminopropyl, N-ethylcarbodiimide 
hydrochloride (EDC), and EDC with N-
hydroxysulfosuccinimide (NHS) on collagen 
electrospinning has been evaluated, 
demonstrating that EDC and EDC-NHS are 
the most appropriate choices and establish 
fiber stability for up to three months (19). 
However, one of the disadvantages of 
crosslinkers (e.g., glutaraldehyde) is probably 
their toxicity. The toxicity of the fibers is due 
to the inactive compounds remaining in the 
crosslinkers, which remain in the fibers due to 
inadequate washing (20). Oleuropein is olive 
leaf extract that can be used as a natural 
crosslinker for protein fibers (21). 

Protein fibers that are stable in an aqueous 
environment and without cross linkers, such 
as laminin fibers produced by Neal et al., are 
much more than fibers produced by food 
industry connectors (22). In Table 1, a 
number of electrospun proteins and solvents 
used for electrospinning are presented. 
Subsequently, some of the most important 
electrospun proteins have been assessed. 
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Table 1. Electrospun protein fibers 
Protein  Solvent/carrier References 
 
 
 
 
 
Gelatin 
 
 
 
 

poly(caprolactone)/ 
hexafluoroisopropanol (23) 

Acetic acid (24) 
Water (25) 
2,2,2-Trifluoroethanol (26) 

Hexafluoro-2-
propanol (27) 

 
 
Collagen  

Acetic acid/Dimethyl 
sulfoxide (28) 

Hexafluoro-2-
propanol (29, 30) 

Trifluoroacetic acid (18) 
PHBV/ Hexafluoro-2-
propanol 

(31) 

 
Soy 
 

Polyvinyl 
alcohol/water 

(32) 

polyethylene 
oxide/water (33) 

Zein 

Ethanol (21, 34, 
35) 

Isopropanol (36, 37) 
Dimethylformamide (38) 
2,2,2-Trifluoroethanol (39) 
Acetic acid (40) 

 
Amaranth 

Pullulan/formic acid (41, 42) 
Hexafluoro-2-
propanol (43) 

Casein polyethylene 
oxide/water; 
triethanolamine 

(44) 

Pullulan/water (45) 
Whey Guar gum/water (8) 

polyethylene 
oxide/water (14, 46) 

Algae 

polyethylene 
oxide/water (47) 

poly methylene 
oxide/aqueous 
sodiumhydroxide 

(47) 

Fish 
sarcoplasmic 
proteins 
(SP) 

Hexafluoro-2-
propanol (48-50) 

 

2.1. Soy 

Recognized as one of the most cost-effective 
protein products, electrospinning isolated soy 
protein is considered due to its 
biocompatibility and high maintenance 
capability (51). In addition, it has features of 
wound healing and reconstruction of damaged 
tissues (52). However, this protein cannot 
perform electrospinning alone and requires a 
carrier polymer for fiber formation (53, 54). 
Therefore, polyethylene oxide and 
polyurethane are used as a carrier polymer for 
electrospinning of isolated soy protein. 
Isolated soy protein fibers have been applied 
for microencapsulation of zinc oxide and 
ciprofloxacin hydrochloride, resulting in 
positive results such as antimicrobial activity 
in the laboratory environment (55-57). 
Moreover, isolated soy protein is employed to 
package food and produce food foils (53). 

2.2. Gelatin  

Owing to its compatibility with the 

environment, degradability, and low cost, 

gelatin, which is obtained from the thermal or 

chemical degradation of collagen, has been 

greatly emphasized as a natural polymer. 

While gelatin is a water-soluble polymer, the 

electrospinning of its aqueous solution alone 

is not possible since gel quickly forms and 

coalesces in the capillary tube during the 

electrospinning process. The formation of a 

triple helix depends on the gelatinization of 

gelatin, which inhibits its electrospinning. 

Therefore, attention has been paid to the 
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combination of solvent and environmental 

parameters that prevent the formation of this 

triple helix (58). Researchers have proposed 

the use of solvents such as formic acid to 

performing gelatin electrospinning (59). The 

gelatin/poly caprolactone fibers were 

produced, and the considerably high level of 

cell proliferation on the poly caprolactone 

gelatin scaffolds was shown (60). 

2.3. Zein 

Zein is the major storage protein from corn 

and a prolamin. In addition, it is a secondary 

product of bioethanol production in the 

industry, widely applied to create 

nano/microfiber since 1960 (61-63). 

Electrospinning of zein is carried out with 

food and food industry purposes (64). The 

loading of curcumin in zein fibers showed 

that curcumin was released slowly and 

constantly and revealed anti-oxidant and 

antibacterial properties. Zine fibers are 

exploited to improve the oxidative stability of 

fish oil. When placed in zein fibers, omega 3 

fatty acids (Omega 3) are more protected 

against oxidation, compared to omega-3 fatty 

acids that have a free state (65-67). 

2.4. Amaranth 

The amaranth protein isolates have an herbal 

origin. Along with pullulan, this protein is 

electrospun for microencapsulation of folic 

acid (41), curcumin (42), folic acid and 

quercetin (68). For example, quercetin and 

folic acid are released in electrolytic fibers 

continuously and slowly, and their antioxidant 

properties are more likely to be preserved, 

compared to the free mode (68). 

2.5. Marine Proteins  

The health providing and bio-activity benefits 

of fish proteins have made increased their use 

in various areas, including pharmaceutical 

and food industry (69-73). Electrospinning of 

the proteins obtained fromBotryococcus 

braunii algae was carried out applying 

polyethylene oxide as a carrier (69, 70). In 

addition, researchers have studied the 

electrospinning of sarcoplasmic protein 

(soluble in water), which includes peptides 

and proteins with high molecular weights. 

Fish sarcoplasmic protein is economically 

justifiable due to its abundance in industrial 

Wastewater. In addition, nano/microfibers 

produced from fish sarcoplasmic protein 

cannot be dissolved in an aqueous 

environment and are decomposed by 

proteolytic enzymes (74). 

2.6. Whey Protein Isolates 

The whey protein isolate is water soluble and 

forms more particles when electrospun 

separately (75). The electrospinning of the 

protein is carried out with the concomitant use 

of a carrier, including pullulan (76) and 

polyethylene oxide (46). Fibers produced by 

the electrospinning of whey protein isolates 

are applied for microencapsulation of 
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probiotic bacteria to increase their survival 

(77). In addition, whey protein isolates are 

exploited for encapsulation of rosemary 

extract. Evaluation of its release demonstrated 

that release depends on pH, which argues the 

possibility of its use in smart drug delivery 

systems (46). Furthermore, whey protein 

isolates are electrospun along with dextran 

and the resulting fibers have acceptable 

morphology (78). Electrospinning of whey 

protein isolates along with Guar gum in 

aqueous solution was carried out, where the 

major part of the resulting fibers was whey 

protein isolates (8). 

2.7. Casein 

Casein is an insoluble milk protein, 

accounting for 70% of milk proteins (79). 

However, casein alone cannot be electrospun 

and must undergo this process along with a 

carrier such as polyvinyl alcohol, 

polyethylene oxide, and pullulan. Casein 

fibers with polyethylene oxide were prepared 

to stabilize the lipase enzyme, and the activity 

of the lipase enzyme in polyvinyl alcohol 

fibers was six times higher than that of casein 

and polyethylene oxide fibers, which can be 

attributed to the high level of polyvinyl 

alcohol fibers, which increases the level of 

access to the enzyme (44). 

3. Polysaccharide Electrospinning 

Polysaccharides are the most abundant 

renewable resources in the environment. In 

Table 2, a number of electrospun 

polysaccharides and solvents used for their 

electrospinning are presented. The 

electrospinning capacity of the 

polysaccharides depends on the length of the 

molecular chains and the interconnection of 

the molecular chains to each other during 

stretching (6, 80). Therefore, molecular 

weight, the concentration of biopolymer 

solution, their conformation structure and 

dilution in shear thinning affect their 

electrospinning properties. The concentration 

required for the electrospinning of 

polysaccharides is a concentration in which 

the polysaccharide molecules become closer 

to each other so that the molecular bonding of 

the chain to the adjacent chain could be 

possible. 

This situation is associated with stretching 

and electrospinning.  Polysaccharides with a 

random spiral structure and a low-shear 

thinning behavior (e.g., amylose and starch 

amylopectin) are suitable for electrospinning. 

In addition, spherical polysaccharides have a 

lower tendency for electrospinning (6, 81). In 

Table 2, a number of electrospun 

polysaccharides and solvents used for their 

electrospinning are presented. In the next part, 

some of the most important electrospun 

polysaccharides will be evaluated. 
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Table 2. Electrospun polysaccharide 

Polysaccharid
e Solvent Referenc

e 

 

Chitosan 

Trifluoroacetic 
acid/Dichloromethan
e 

 Acetic acid 

 
 
(82-85) 

Starch 
Formic acid 

Dimethyl sulfoxide 
95% 

 (81, 86-
88) 

Alginate Pullulan/water (89) 

Pullulan 

Redistilled water 

Dimethyl sulfoxide 
and Dimethyl 
sulfoxide/water 

95% Formic acid 

 (81, 87, 
88, 90, 
91) 

 

3.1. Chitosan  

Chitosan is a polysaccharide derived from 

chitin, which is produced by thermochemical 

reactions. Chitosan can be found in weak 

acids such as acetic acid. One of the unique 

features of chitosan is its antimicrobial 

property, which is due to the presence of 

positive charge amine groups in its structure 

that react with bacterial cell membranes and 

cause bacterial death through their destruction 

(92, 93). Several attempts have been made to 

make electrospun chitosan nanofibers by 

changing the electrospinning conditions 

(needle distance to the collector plate, 

voltage, solvent flow rate), as well as the 

physical and chemical properties of chitosan, 

such as the molecular weight (Mw) of 

chitosan or the change of solvent type (94-

96). In a study, chitosan fibers were used for 

microencapsulation of the essential oil. 

Moreover, the researchers assessed the effect 

of rheological properties on electrospinning of 

chitosan (97). Moreover, the electrospun 

chitosan nanofibers are applied for 

microencapsulation of glucose oxidase and 

hydrogen peroxide, which have revealed their 

antimicrobial properties (98). Essential oils of 

cinnamon (99), silver particles (100, 101), 

curcumin (102) and lysosome (103) were 

electrospun in chitosan fibers. 

3.2. Starch  

Starch is a plant protein storage that consists 

of two parts, namely amylose and 

amylopectin. Early studies have focused on 

the electrospinning potential of amyloid due 

to the linearity and ability to establish intra-

molecular bonding (81, 87, 88). Amylopectin 

content of starch plays an important role in 

the electrospinning of starch and should be 

below 65% since helix structure of starch 

increases the electrospinning ability and leads 

to the formation of starch nanofibers (104). 

Starch derivatives such as hydroxypropyl are 

electrospun in combination with polyethylene 

oxide, and the resulting fibers are used in 

tissue engineering (105). 
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3.3. Alginate  

In a research, the electrospun nanofiber of 

alginate was obtained using a polar solid 

solvent such as glycerol (106). In addition to 

reporting a diameter of 120-300 nm for the 

fiber produced, researchers demonstrated that 

the fiber diameter had a direct relationship 

with alginate concentration and the ratio of 

water and glycerol to the solvent. The 

presence of glycerol in alginate solutions 

improves the alginate electrospinning, which 

is the result of the destruction of intracellular 

and exogenous hydrogen bonds of alginate 

chains. To facilitate alginate electrospinning, 

the combination with other polymers, such as 

polyethylene oxide, was evaluated (107). 

Generally, the electrospun alginate/chitosan 

mixture can be used for the treatment of 

wounds and drug delivery applications (108). 

Furthermore, the fibers obtained from 

alginate-pectin-polyethylene oxide mixture 

can be exploited for microencapsulation of 

folic acid to increase its sustainability against 

the light (109). 

3.4. Cellulose 

Cellulose is insoluble in a wide range of 

solvents due to its chemical structure (110). 

The electrospinning process of this 

polysaccharide is limited, and the 

electrospinning ability of cellulose 

significantly depends on molecular weight 

and solvent selection (111). The cellulose-

based electrospun nanofibers have been 

assessed for non-immobilizing of enzymes 

and microencapsulation of drug/vitamin 

(112). The cellulose acetate nanofibers with a 

230 nm diameter are used for non-

immobilizing of Lipase Candida rugose, 

which showed the significant increase in 

thermal stability and relatively high durability 

relative to the equivalent free enzyme (113). 

In addition, the electrospun cellulose acetate 

fibers are applied as biosensors to detect the 

considerably low concentrations of viologen 

and cytochrome C in aqueous solutions (114). 

3.5. Dextran 

A bacterial polysaccharide composed of D-

glucopyranose units, dextran has several 

applications in areas of drug delivery, 

medicine and food industry owing to its 

biocompatibility and biodegradability features 

(115). The crosslinking of dextran by 

glutaraldehyde occurs with regard to the 

water solubility of dextran, and the resulting 

fiber with a diameter of 200 nm can be used 

in biosensors (116, 117). 

3.6. Pullulan 

Pullulan is also water soluble and fibers with 

a diameter of 100-700 nm are obtained in 

their electrospinning from aqueous solution. 

In addition, this compound is used as a carrier 
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polymer (90, 118), and its fibers with a 

diameter of several hundred nm to several μm 

were obtained by electrospinning of the 

solution containing a mixture of DMSO/water 

as a solvent. The electrospun fibers can be 

used for microencapsulation of bioactive 

compounds and active packaging (119, 120). 

Furthermore, pullulan fibers have been 

exploited along with amaranth protein for 

microencapsulation of curcumin and 

quercetin (42, 68). 

4. Conclusion 

Electrospinning is a cost-effective and simple 

technique for nanofiber production with the 

use of polymers. Given the high potential of 

nanofibers in various fields (e.g., medicine, 

smart drug delivery, active food packaging 

and filtration) and with regard to the 

increasing concerns of researchers about the 

adverse effects of synthetic compounds, the 

electrospun polymer nanofibers are expected 

to be produced at industrial scales for 

application in the mentioned fields, especially 

as a foundation for antibacterial compounds. 
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