Volume 10, Issue 4 (12-2022)                   Jorjani Biomed J 2022, 10(4): 48-59 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahim S M I, Jafari S M. A Review of Potential Anti-Cancer Effect of Sesquiterpene Lactones in Breast Cancer. Jorjani Biomed J 2022; 10 (4) :48-59
URL: http://goums.ac.ir/jorjanijournal/article-1-930-en.html
1- Department of Biochemistry, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
2- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran/ Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran , s.meh.jafari@gmail.com
Abstract:   (1582 Views)
Despite significant advances in treatment, breast cancer remains a medical problem and the most common cancer leading to death among women worldwide. The most common breast cancer treatments, radiotherapy and chemotherapy are usually expensive and can cause severe side effects and low response rates due to drug resistance. To overcome these problems, medicinal plants can be the best alternative to chemotherapy drugs with fewer side effects and cost-effectiveness. Sesquiterpene lactones are compounds of the Asteraceae plant family that has significantly impacted various aspects of breast cancer cells. This review focused on the biological properties of Sesquiterpene lactones and their potential processes in breast cancer, leading to enhanced anticancer effects.
Full-Text [PDF 638 kb]   (729 Downloads) |   |   Full-Text (HTML)  (141 Views)  
Type of Article: Review Article | Subject: General medicine
Received: 2022/09/10 | Accepted: 2022/10/27 | Published: 2022/11/25

References
1. DeSantis CE, Ma J, Goding Sauer A, Newman LA, Jemal A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin. 2017;67(6):439-48. [view at publisher] [DOI] [PMID] [Google Scholar]
2. WHO. 2020 [Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer.
3. Nafissi N, Khayamzadeh M, Zeinali Z, Pazooki D, Hosseini M, Akbari ME. Epidemiology and Histopathology of Breast Cancer in Iran versus Other Middle Eastern Countries. Middle East Journal of Cancer. 2018;9(3):243-51. [view at publisher] [Google Scholar]
4. Shah R, Rosso K, Nathanson SD. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol. 2014;5(3):283-98. [DOI] [PMID] [PMCID]
5. Grabinski VF, Brawley OW. Disparities in Breast Cancer. Obstet Gynecol Clin North Am. 2022;49(1):149-65. [DOI] [PMID] [Google Scholar]
6. Jafari SM, Panjehpour M, Aghaei M, Joshaghani HR, Enderami SE. A3 Adenosine Receptor Agonist Inhibited Survival of Breast Cancer Stem Cells via GLI-1 and ERK1/2 Pathway. J Cell Biochem. 2017;118(9):2909-20. [DOI] [PMID] [Google Scholar]
7. Holland K, Sechopoulos I, Mann RM, den Heeten GJ, van Gils CH, Karssemeijer N. Influence of breast compression pressure on the performance of population-based mammography screening. Breast Cancer Res. 2017;19(1):126. [view at publisher] [DOI] [PMID] [PMCID] [ISIGoogle Scholar]
8. Katsura C, Ogunmwonyi I, Kankam HK, Saha S. Breast cancer: presentation, investigation and management. Br J Hosp Med (Lond). 2022;83(2):1-7. [view at publisher] [DOI] [PMID] [Google Scholar]
9. Holmberg L, Anderson H. HABITS (hormonal replacement therapy after breast cancer--is it safe?), a randomised comparison: trial stopped. Lancet. 2004;363(9407):453-5. [DOI] [Google Scholar]
10. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380-7. [view at publisher] [DOI] [PMID] [Google Scholar]
11. Kleinman HK, Liau G. Gene therapy for antiangiogenesis. J Natl Cancer Inst. 2001;93(13):965-7. [DOI] [PMID]
12. Rozenberg S, Di Pietrantonio V, Vandromme J, Gilles C. Menopausal hormone therapy and breast cancer risk. Best Pract Res Clin Endocrinol Metab. 2021;35(6):101577. [view at publisher] [DOI] [PMID] [Google Scholar]
13. Cragg GM, Newman DJ, Snader KM. Natural products in drug discovery and development. J Nat Prod. 1997;60(1):52-60. [DOI] [PMID] [Google Scholar]
14. Hosseinzadeh M, Eivazi Ziaei J, Mahdavi N, Aghajari P, Vahidi M, Fateh A, et al. Risk factors for breast cancer in Iranian women: a hospital-based case-control study in tabriz, iran. J Breast Cancer. 2014;17(3):236-43. [DOI] [PMID] [PMCID] [Google Scholar]
15. Nabatchian F, Moradi A, Aghaei M, Ghanadian M, Jafari SM, Tabesh S. New 6(17)-epoxylathyrane diterpene: aellinane from Euphorbia aellenii induces apoptosis via mitochondrial pathway in ovarian cancer cell line. Toxicol Mech Methods. 2017;27(8):622-30. [DOI] [PMID] [Google Scholar]
16. Arora RD, Menezes RG. Vinca Alkaloid Toxicity. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.
17. Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. 2019;24:40. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
18. Imran M, Rauf A, Khan IA, Shahbaz M, Qaisrani TB, Fatmawati S, et al. Thymoquinone: A novel strategy to combat cancer: A review. Biomed Pharmacother. 2018;106:390-402. [view at publisher] [DOI] [PMID] [Google Scholar]
19. Gupta SC, Kannappan R, Reuter S, Kim JH, Aggarwal BB. Chemosensitization of tumors by resveratrol. Ann N Y Acad Sci. 2011;1215:150-60. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
20. Khaiwa N, Maarouf NR, Darwish MH, Alhamad DWM, Sebastian A, Hamad M, et al. Camptothecin's journey from discovery to WHO Essential Medicine: Fifty years of promise. Eur J Med Chem. 2021;223:113639. [view at publisher] [DOI] [PMID] [Google Scholar]
21. Pinto N, Prokopec SD, Ghasemi F, Meens J, Ruicci KM, Khan IM, et al. Flavopiridol causes cell cycle inhibition and demonstrates anti-cancer activity in anaplastic thyroid cancer models. PLoS One. 2020;15(9):e0239315. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
22. Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr. 2018;58(6):924-41. [DOI] [PMID] [Google Scholar]
23. Gach K, Długosz A, Janecka A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn-Schmiedeberg's Archives of Pharmacology. 2015;388(5):477-86. [view at publisher] [DOI] [PMID] [Google Scholar]
24. Zhang S, Won YK, Ong CN, Shen HM. Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Curr Med Chem Anticancer Agents. 2005;5(3):239-49. [view at publisher] [DOI] [PMID] [Google Scholar]
25. Taleghani A, Emami SA, Tayarani-Najaran Z. Artemisia: a promising plant for the treatment of cancer. Bioorg Med Chem. 2020;28(1):115180. [view at publisher] [DOI] [PMID] [Google Scholar]
26. Tayarani-Najaran Z, Makki FS, Alamolhodaei NS, Mojarrab M, Emami SA. Cytotoxic and apoptotic effects of different extracts of Artemisia biennis Willd. on K562 and HL-60 cell lines. Iran J Basic Med Sci. 2017;20(2):166-71. [Google Scholar]
27. Ramazani E, Tayarani-Najaran Z, Shokoohinia Y, Mojarrab M. Comparison of the cytotoxic effects of different fractions of Artemisia ciniformis and Artemisia biennis on B16/F10, PC3 and MCF7 Cells. Res Pharm Sci. 2020;15(3):273-80. [DOI] [PMID] [PMCID] [Google Scholar]
28. Zamani S, Emami SA, Iranshahi M, Zamani Taghizadeh Rabe S, Mahmoudi M. Sesquiterpene fractions of Artemisia plants as potent inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 expression. Iran J Basic Med Sci. 2019;22(7):774-80. [Google Scholar]
29. Chadwick M, Trewin H, Gawthrop F, Wagstaff C. Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci. 2013;14(6):12780-805. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
30. Shahali A, Ghanadian M, Jafari SM, Aghaei M. Mitochondrial and caspase pathways are involved in the induction of apoptosis by nardosinen in MCF-7 breast cancer cell line. Res Pharm Sci. 2018;13(1):12-21. [DOI] [PMID] [PMCID] [Google Scholar]
31. Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005;105(11):4163-9. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
32. Keyvanloo Shahrestanaki M, Bagheri M, Ghanadian M, Aghaei M, Jafari SM. Centaurea cyanus extracted 13-O-acetylsolstitialin A decrease Bax/Bcl-2 ratio and expression of cyclin D1/Cdk-4 to induce apoptosis and cell cycle arrest in MCF-7 and MDA-MB-231 breast cancer cell lines. J Cell Biochem. 2019;120(10):18309-19. [DOI] [PMID] [Google Scholar]
33. Kamesaki H. Mechanisms involved in chemotherapy-induced apoptosis and their implications in cancer chemotherapy. Int J Hematol. 1998;68(1):29-43. [DOI] [Google Scholar]
34. Bold RJ, Termuhlen PM, McConkey DJ. Apoptosis, cancer and cancer therapy. Surg Oncol. 1997;6(3):133-42. [view at publisher] [DOI] [Google Scholar]
35. Hamzeloo-Moghadam M, Aghaei M, Fallahian F, Jafari SM, Dolati M, Abdolmohammadi MH, et al. Britannin, a sesquiterpene lactone, inhibits proliferation and induces apoptosis through the mitochondrial signaling pathway in human breast cancer cells. Tumour Biol. 2015;36(2):1191-8. [view at publisher] [DOI] [PMID] [Google Scholar]
36. Zulak KG, Bohlmann J. Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol. 2010;52(1):86-97. [DOI] [PMID] [Google Scholar]
37. Modzelewska A, Sur S, Kumar SK, Khan SR. Sesquiterpenes: natural products that decrease cancer growth. Curr Med Chem Anticancer Agents. 2005;5(5):477-99. [view at publisher] [DOI] [PMID] [Google Scholar]
38. Gong DY, Chen XY, Guo SX, Wang BC, Li B. Recent advances and new insights in biosynthesis of dendrobine and sesquiterpenes. Appl Microbiol Biotechnol. 2021;105(18):6597-606. [view at publisher] [DOI] [PMID] [Google Scholar]
39. Bartikova H, Hanusova V, Skalova L, Ambroz M, Bousova I. Antioxidant, pro-oxidant and other biological activities of sesquiterpenes. Curr Top Med Chem. 2014;14(22):2478-94. [view at publisher] [DOI] [PMID] [Google Scholar]
40. Abu-Izneid T, Rauf A, Shariati MA, Khalil AA, Imran M, Rebezov M, et al. Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol Res. 2020;161:105165. [view at publisher] [DOI] [PMID] [Google Scholar]
41. Pragna Lakshmi T, Vajravijayan S, Moumita M, Sakthivel N, Gunasekaran K, Krishna R. A novel guaiane sesquiterpene derivative, guai-2-en-10α-ol, from Ulva fasciata Delile inhibits EGFR/PI3K/Akt signaling and induces cytotoxicity in triple-negative breast cancer cells. Mol Cell Biochem. 2018;438(1-2):123-39. [view at publisher] [DOI] [PMID] [Google Scholar]
42. de Oliveira Mauro M, Matuo R, de David N, Strapasson RLB, Oliveira RJ, Stefanello MÉA, et al. Actions of sesquiterpene lactones isolated from Moquiniastrum polymorphum subsp. floccosum in MCF7 cell line and their potentiating action on doxorubicin. BMC Pharmacology and Toxicology. 2017;18(1):53. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
43. Shiau JY, Nakagawa-Goto K, Lee KH, Shyur LF. Phytoagent deoxyelephantopin derivative inhibits triple negative breast cancer cell activity by inducing oxidative stress-mediated paraptosis-like cell death. Oncotarget. 2017;8(34):56942-58. [DOI] [PMID] [PMCID] [Google Scholar]
44. Yeo SK, Ali AY, Hayward OA, Turnham D, Jackson T, Bowen ID, et al. β-Bisabolene, a Sesquiterpene from the Essential Oil Extract of Opoponax (Commiphora guidottii), Exhibits Cytotoxicity in Breast Cancer Cell Lines. Phytother Res. 2016;30(3):418-25. [DOI] [PMID] [Google Scholar]
45. Hanušová V, Caltová K, Svobodová H, Ambrož M, Skarka A, Murínová N, et al. The effects of β-caryophyllene oxide and trans-nerolidol on the efficacy of doxorubicin in breast cancer cells and breast tumor-bearing mice. Biomed Pharmacother. 2017;95:828-36. [view at publisher] [DOI] [PMID] [Google Scholar]
46. Heinrich M, Robles M, West JE, Ortiz de Montellano BR, Rodriguez E. Ethnopharmacology of Mexican asteraceae (Compositae). Annu Rev Pharmacol Toxicol. 1998;38:539-65. [DOI] [PMID]
47. Ludwiczuk A, Skalicka-Woźniak K, Georgiev MI. Chapter 11 - Terpenoids. In: Badal S, Delgoda R, editors. Pharmacognosy. Boston: Academic Press; 2017. p. 233-66. [DOI]
48. Rozas-Muñoz E, Lepoittevin JP, Pujol R, Giménez-Arnau A. Allergic Contact Dermatitis to Plants: Understanding the Chemistry will Help our Diagnostic Approach. Actas dermo-sifiliograficas. 2012;103. [view at publisher] [DOI] [PMID] [Google Scholar]
49. Berry MI, editor HERBAL PRODUCTS, PART 6. THE CHAMOMILES1995.
50. Poupel F, Aghaei M, Movahedian A, Jafari SM, Shahrestanaki MK. Dihydroartemisinin Induces Apoptosis in Human Bladder Cancer Cell Lines Through Reactive Oxygen Species, Mitochondrial Membrane Potential, and Cytochrome C Pathway. Int J Prev Med. 2017;8:78. [DOI] [PMID] [PMCID] [Google Scholar]
51. Liu W, Furuta E, Shindo K, Watabe M, Xing F, Pandey PR, et al. Cacalol, a natural sesquiterpene, induces apoptosis in breast cancer cells by modulating Akt-SREBP-FAS signaling pathway. Breast Cancer Res Treat. 2011;128(1):57-68. [view at publisher] [DOI] [PMID] [Google Scholar]
52. Fallahian F, Aghaei M, Abdolmohammadi MH, Hamzeloo-Moghadam M. Molecular mechanism of apoptosis induction by Gaillardin, a sesquiterpene lactone, in breast cancer cell lines : Gaillardin-induced apoptosis in breast cancer cell lines. Cell Biol Toxicol. 2015;31(6):295-305. [view at publisher] [DOI] [PMID] [Google Scholar]
53. Roy A, Manikkam R. Cytotoxic Impact of Costunolide Isolated from Costus speciosus on Breast Cancer via Differential Regulation of Cell Cycle-An In-vitro and In-silico Approach. Phytother Res. 2015;29(10):1532-9. [DOI] [PMID] [Google Scholar]
54. Yang B, Zhao Y, Lou C, Zhao H. Eupalinolide O, a novel sesquiterpene lactone from Eupatorium lindleyanum DC., induces cell cycle arrest and apoptosis in human MDA-MB-468 breast cancer cells. Oncol Rep. 2016;36(5):2807-13. [view at publisher] [DOI] [PMID] [Google Scholar]
55. Liu J, Liu M, Wang S, He Y, Huo Y, Yang Z, et al. Alantolactone induces apoptosis and suppresses migration in MCF‑7 human breast cancer cells via the p38 MAPK, NF‑κB and Nrf2 signaling pathways. Int J Mol Med. 2018;42(4):1847-56. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
56. Verma SS, Rai V, Awasthee N, Dhasmana A, Rajalaksmi DS, Nair MS, et al. Isodeoxyelephantopin, a Sesquiterpene Lactone Induces ROS Generation, Suppresses NF-κB Activation, Modulates LncRNA Expression and Exhibit Activities Against Breast Cancer. Sci Rep. 2019;9(1):17980. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
57. Fan S, Cui Y, Hu Z, Wang W, Jiang W, Xu H. Ambrosin sesquiterpene lactone exerts selective and potent anticancer effects in drug-resistant human breast cancer cells (MDA-MB-231) through mitochondrial mediated apoptosis, ROS generation and targeting Akt/β-Catenin signaling pathway. J buon. 2020;25(5):2221-7. [Google Scholar]
58. Nakshatri H, Rice SE, Bhat-Nakshatri P. Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase. Oncogene. 2004;23(44):7330-44. [view at publisher] [DOI] [PMID] [Google Scholar]
59. Sweeney CJ, Mehrotra S, Sadaria MR, Kumar S, Shortle NH, Roman Y, et al. The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastasis and improves survival in a xenograft model of breast cancer. Mol Cancer Ther. 2005;4(6):1004-12. [DOI] [PMID] [Google Scholar]
60. Looi CY, Arya A, Cheah FK, Muharram B, Leong KH, Mohamad K, et al. Induction of apoptosis in human breast cancer cells via caspase pathway by vernodalin isolated from Centratherum anthelminticum (L.) seeds. PLoS One. 2013;8(2):e56643. [DOI] [PMID] [PMCID] [Google Scholar]
61. Nakagawa-Goto K, Chen JY, Cheng YT, Lee WL, Takeya M, Saito Y, et al. Novel sesquiterpene lactone analogues as potent anti-breast cancer agents. Mol Oncol. 2016;10(6):921-37. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
62. Lee J, Hwangbo C, Lee JJ, Seo J, Lee JH. The sesquiterpene lactone eupatolide sensitizes breast cancer cells to TRAIL through down-regulation of c-FLIP expression. Oncol Rep. 2010;23(1):229-37. [view at publisher] [DOI] [Google Scholar]
63. Liang N, Li Y, Chung HY. Two natural eudesmane-type sesquiterpenes from Laggera alata inhibit angiogenesis and suppress breast cancer cell migration through VEGF- and Angiopoietin 2-mediated signaling pathways. Int J Oncol. 2017;51(1):213-22. [view at publisher] [DOI] [PMID] [Google Scholar]
64. Ma JH, Qi J, Liu FY, Lin SQ, Zhang CY, Xie WD, et al. Ivalin Inhibits Proliferation, Migration and Invasion by Suppressing Epithelial Mesenchymal Transition in Breast Cancer Cells. Nutr Cancer. 2018;70(8):1330-8. [DOI] [PMID] [Google Scholar]
65. Qu Z, Lin Y, Mok DK, Bian Q, Tai WC, Chen S. Arnicolide D Inhibits Triple Negative Breast Cancer Cell Proliferation by Suppression of Akt/mTOR and STAT3 Signaling Pathways. Int J Med Sci. 2020;17(11):1482-90. [DOI] [PMID] [PMCID] [Google Scholar]
66. Saleem MZ, Nisar MA, Alshwmi M, Din SRU, Gamallat Y, Khan M, et al. Brevilin A Inhibits STAT3 Signaling and Induces ROS-Dependent Apoptosis, Mitochondrial Stress and Endoplasmic Reticulum Stress in MCF-7 Breast Cancer Cells. Onco Targets Ther. 2020;13:435-50. [DOI] [PMID] [PMCID] [Google Scholar]
67. Mendis AS, Thabrew I, Ediriweera MK, Samarakoon SR, Tennekoon KH, Adhikari A, et al. Isolation of a New Sesquiterpene Lactone From Vernonia Zeylanica (L) Less and its Anti-Proliferative Effects in Breast Cancer Cell Lines. Anticancer Agents Med Chem. 2019;19(3):410-24. [DOI] [PMID] [Google Scholar]
68. Dou S, Yang C, Zou D, Da W, Masood M, Adlat S, et al. Atractylenolide II induces cell cycle arrest and apoptosis in breast cancer cells through ER pathway. Pak J Pharm Sci. 2021;34(4):1449-58. [Google Scholar]
69. Adjuik M, Babiker A, Garner P, Olliaro P, Taylor W, White N. Artesunate combinations for treatment of malaria: meta-analysis. Lancet. 2004;363(9402):9-17. [view at publisher] [DOI] [Google Scholar]
70. Singh NP, Lai H. Selective toxicity of dihydroartemisinin and holotransferrin toward human breast cancer cells. Life Sci. 2001;70(1):49-56. [view at publisher] [DOI] [Google Scholar]
71. von Hagens C, Walter-Sack I, Goeckenjan M, Osburg J, Storch-Hagenlocher B, Sertel S, et al. Prospective open uncontrolled phase I study to define a well-tolerated dose of oral artesunate as add-on therapy in patients with metastatic breast cancer (ARTIC M33/2). Breast Cancer Res Treat. 2017;164(2):359-69. [view at publisher] [DOI] [PMID] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Jorjani Biomedicine Journal

Designed & Developed by : Yektaweb