Volume 9, Issue 4 (12-2021)                   Jorjani Biomed J 2021, 9(4): 33-43 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseinabadi F, Faraji T, Malmir M. Impact of Quercetin on Sperm parameters, Testicular Tissue, and Sex Hormone: A Systematic Review. Jorjani Biomed J. 2021; 9 (4) :33-43
URL: http://goums.ac.ir/jorjanijournal/article-1-862-en.html
1- Academic Center for Education, Culture and Research, Arak, Iran
2- Department of Midwifery, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran , m.malmir66@hotmail.com
Abstract:   (214 Views)
Background and Objective: Quercetin is a polyphenolic flavonoid compound with a potent antioxidant impact, has been proposed to make a drastic contribution in treating male infertility. The current systematic review aimed to provide an overview of previous studies about quercetin's impact on male infertility.
Material and Methods: Electronic search with MeSH words including Quercetin, Infertility, Sperm, Testicular tissue, and Sex hormones was accomplished in databases Web of Science, Scopus, Science Direct, Wiley, NCBI, and Google Scholar. Finally, 296 articles were recognized in the primary search.144 papers of them after passing the analysis stage contains Identification, Screening, and Eligibility was selected for assessment.
Results: Quercetin prevents damage to the testicular germinal epithelium and facilitates the spermatogenesis process by strengthening the antioxidant system, reducing lipid peroxidation and oxidative stress, preventing the expression of pro-apoptotic genes, increases testosterone and gonadotropins.
Conclusion: In conclusion, the present review showed that quercetin by its antioxidant impacts, can counteract various toxins that induce oxidative stress in the male reproductive system.
     
Type of Article: Review Article | Subject: Health
Received: 2021/09/16 | Accepted: 2021/11/15 | Published: 2021/12/28

References
1. Xu, D., Hu, M. J., Wang, Y. Q., & Cui, Y. L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019; 24(6), 1123. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
2. Naseer, Z., Ahmad, E., Şahiner, H. S., Epikmen, E. T., Fiaz, M., Yousuf, M. R., ... & Aksoy, M. Dietary quercetin maintains the semen quality in rabbits under summer heat stress. Theriogenology. 2018; 122, 88-93. [view at publisher] [DOI] [PMID] [Google Scholar]
3. Mao, T., Han, C., Wei, B., Zhao, L., Zhang, Q., Deng, R., ... & Zhang, Y. Protective effects of quercetin against cadmium chloride-induced oxidative injury in goat sperm and zygotes. Biological trace element research. 2018; 185(2), 344-355. [view at publisher] [DOI] [PMID] [Google Scholar]
4. Yelumalai, S., Giribabu, N., Kamarulzaman Karim, S. Z. O., & Salleh, N. B. In vivo administration of quercetin ameliorates sperm oxidative stress, inflammation, preserves sperm morphology and functions in streptozotocin-nicotinamide induced adult male diabetic rats. Archives of Medical Science: AMS. 2019; 15(1), 240. [DOI] [PMID] [PMCID] [Google Scholar]
5. Tvrdá E, Debacker M, Ďuračka M, Kováč J, Bučko O. Quercetin and Naringenin Provide Functional and Antioxidant Protection to Stored Boar Semen. Animals. 2020 Oct;10(10):1930. 0 [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
6. Appiah, M. O., Li, W., Zhao, J., Liu, H., Dong, Y., Xiang, J., ... & Lu, W. Quercetin supplemented casein-based extender improves the post-thaw quality of rooster semen. Cryobiology. 2020. [view at publisher] [DOI] [PMID] [Google Scholar]
7. Andres, S., Pevny, S., Ziegenhagen, R., Bakhiya, N., Schäfer, B., Hirsch‐Ernst, K. I., & Lampen, A. Safety aspects of the use of quercetin as a dietary supplement. Molecular Nutrition & Food Research. 2018; 62(1), 1700447. [DOI] [PMID] [Google Scholar]
8. Seddiki, Y., da Silva, F. M., & da Silva, F. M. Antioxidant properties of polyphenols and their potential use in improvement of male fertility: a review. Biomed J Sci Tech Res. 2017; 1(3), 612-617. [DOI] [Google Scholar]
9. Batiha, G. E. S., Beshbishy, A. M., Mulla, Z. S., Ikram, M., El-Hack, M. E. A., Taha, A. E., ... & Elewa, Y. H. A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020; 9(3), 374. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
10. Lopes, A. S., Lane, M., & Thompson, J. G. Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Human reproduction. 2010; 25(11), 2762-2773. [view at publisher] [DOI] [PMID] [Google Scholar]
11. Zhang, Y. M. C. Protective effect of quercetin on Aroclor 1254-induced oxidative damage in cultured chicken spermatogonial cells. Toxicological Sciences. 2005; 88(2), 545-550. [view at publisher] [DOI] [PMID] [Google Scholar]
12. Mi, Y., Zhang, C., & Taya, K. Quercetin protects spermatogonial cells from 2, 4-d-induced oxidative damage in embryonic chickens. Journal of Reproduction and Development. 2007; 0703260066-0703260066. [view at publisher] [DOI] [PMID] [Google Scholar]
13. Mi Y, Zhang C, Li C, Taneda S, Watanabe G, Suzuki AK, Taya K. Quercetin protects embryonic chicken spermatogonial cells from oxidative damage intoxicated with 3-methyl-4-nitrophenol in primary culture. Toxicology letters. 2009 Oct 8;190(1):61-5. [view at publisher] [DOI] [PMID] [Google Scholar]
14. Abdallah, Zribi, Ammar-Keskes, Kováčik, A., Paál, D., Libová, Ľ., & Lukáč, N. Protective effects of quercetin on selected oxidative biomarkers in bovine spermatozoa subjected to ferrous ascorbate. Reproduction in Domestic Animals. 2011; 51(4), 524-537. [view at publisher] [DOI] [PMID] [Google Scholar]
15. Ebokaiwe, Farombi, Kováčik, A., Paál, D., Libová, Ľ., & Lukáč, N. Protective effects of quercetin on selected oxidative biomarkers in bovine spermatozoa subjected to ferrous ascorbate. Reproduction in Domestic Animals. 2015; 51(4), 524-537. [view at publisher] [DOI] [PMID] [Google Scholar]
16. Tvrdá, E., Tušimová, E., Kováčik, A., Paál, D., Libová, Ľ., & Lukáč, N. Protective effects of quercetin on selected oxidative biomarkers in bovine spermatozoa subjected to ferrous ascorbate. Reproduction in Domestic Animals. 2016; 51(4), 524-537. [view at publisher] [DOI] [PMID] [Google Scholar]
17. Osawe, S. O., & Farombi, E. O. Quercetin and rutin ameliorates sulphasalazine‐induced spermiotoxicity, alterations in reproductive hormones and steroidogenic enzyme imbalance in rats. Andrologia. 2018; 50(5), e12981. [view at publisher] [DOI] [PMID] [Google Scholar]
18. Ghaniei, A., Eslami, M., Zadeh Hashem, E., Rezapour, R., & Talebi, A. Quercetin attenuates H2O2‐induced toxicity of rooster semen during liquid storage at 4° C. Journal of animal physiology and animal nutrition. 2019; 103(3), 713-722. [view at publisher] [DOI] [PMID] [Google Scholar]
19. Moretti, E., Mazzi, L., Terzuoli, G., Bonechi, C., Iacoponi, F., Martini, S., ... & Collodel, G. Effect of quercetin, rutin, naringenin and epicatechin on lipid peroxidation induced in human sperm. Reproductive Toxicology. 2012; 34(4), 651-657. [view at publisher] [DOI] [PMID] [Google Scholar]
20. Fernández-Checa, J. C., Kaplowitz, N., Colell, A., & García-Ruiz, C. Oxidative stress and alcoholic liver disease. Alcohol health and research world.1997; 21(4), 321. [PMID] [Google Scholar]
21. Yoshimoto, H., Takeo, T., & Nakagata, N. Dimethyl sulfoxide and quercetin prolong the survival, motility, and fertility of cold-stored mouse sperm for 10 days. Biology of reproduction. 2017; 97(6), 883-891. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
22. Naseer, Z., Ahmad, E., Aksoy, M., & Epikmen, E. T. Impact of quercetin supplementation on testicular functions in summer heat-stressed rabbits. World Rabbit Science. 2020; 28(1), 19-27. [view at publisher] [DOI] [Google Scholar]
23. Tvrdá, E., Lukáč, N., Lukáčová, J., Jambor, T., Hashim, F., & Massányi, P. Dose-and time-dependent in vitro effects of quercetin on bovine spermatozoa activity and superoxide production. Folia Veterinaria. 2014; 58(4), 224-23 [Google Scholar]
24. Rakha, B. A., Qurrat-ul-Ain, Ansari, M. S., Akhter, S., Akhter, A., Awan, M. A., & Santiago-Moreno, J. Effect of Quercetin on Oxidative Stress, Mitochondrial Activity, and Quality of Indian Red Jungle Fowl (Gallus gallus murghi) Sperm. Biopreservation and Biobanking. 2020. [view at publisher] [DOI] [Google Scholar]
25. .Wijerathne, T. D., Kim, J. H., Kim, M. J., Kim, C. Y., Chae, M. R., Lee, S. W., & Lee, K. P. Onion peel extract and its constituent, quercetin inhibits human Slo3 in a pH and calcium dependent manner. The Korean Journal of Physiology & Pharmacology. 2019; 23(5), 381-392. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
26. Fraser, L. R., Abeydeera, L. R., & Niwa, K. (1995). Ca2+‐regulating mechanisms that modulate bull sperm capacitation and acrosomal exocytosis as determined by chlortetracycline analysis. Molecular reproduction and development, 40(2), 233-241. [view at publisher] [DOI] [PMID] [Google Scholar]
27. Hess, R. A., & De Franca, L. R. Spermatogenesis and cycle of the seminiferous epithelium. In Molecular mechanisms in spermatogenesis (pp. 1-15). Springer, New York, NY. 2009. [view at publisher] [DOI] [PMID] [Google Scholar]
28. Khojasteh, S. M. B., Khameneh, R. J., Houresfsnd, M., & Yaldagard, E. A review on medicinal plants used for improvement of spermatogenesis. Biology and Medicine. 2016; 8(4), 1. [Google Scholar]
29. Nowicka-Bauer, K., & Nixon, B. Molecular Changes Induced by Oxidative Stress that Impair Human Sperm Motility. Antioxidants. 2020; 9(2), 134. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
30. . Storey, B. T. Biochemistry of the induction and prevention of lipoperoxidative damage in human spermatozoa. Molecular human reproduction. 1997; 3(3), 203-213. [view at publisher] [DOI] [PMID] [Google Scholar]
31. Gaweł, S., Wardas, M., Niedworok, E., & Wardas, P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci lekarskie (Warsaw, Poland: 1960). 2004; 57(9-10), 453. [view at publisher] [Google Scholar]
32. Cemeli E, Schmid TE, Anderson D. Modulation by flavonoids of DNA damage induced by estrogen‐like compounds. Environmental and molecular mutagenesis. 2004;44(5):420-6. [view at publisher] [DOI] [PMID] [Google Scholar]
33. Zribi, N., Chakroun, N. F., Abdallah, F. B., Elleuch, H., Sellami, A., Gargouri, J., ... & Keskes, L. A. Effect of freezing-thawing process and quercetin on human sperm survival and DNA integrity. Cryobiology. 2012; 65(3), 326-331. [view at publisher] [DOI] [PMID] [Google Scholar]
34. Gibb, Z., Butler, T. J., Morris, L. H. A., Maxwell, W. M. C., & Grupen, C. G. Quercetin improves the postthaw characteristics of cryopreserved sex-sorted and nonsorted stallion sperm. Theriogenology. 2013; 79(6), 1001-1009. [view at publisher] [DOI] [PMID] [Google Scholar]
35. Jahan, S., Rehman, S., Ullah, H., Munawar, A., Ain, Q. U., & Iqbal, T. Ameliorative effect of quercetin against arsenic-induced sperm DNA damage and daily sperm production in adult male rats. Drug and Chemical Toxicology. 2016; 39(3), 290-296. [view at publisher] [DOI] [PMID] [Google Scholar]
36. . Seifi-Jamadi, A., Ahmad, E., Ansari, M., & Kohram, H. Antioxidant effect of quercetin in an extender containing DMA or glycerol on freezing capacity of goat semen. Cryobiology. 2017; 75, 15-20. [view at publisher] [DOI] [PMID] [Google Scholar]
37. Azadi, L., Tavalaee, M., Deemeh, M. R., Arbabian, M., & Nasr-Esfahani, M. H. Effects of tempol and quercetin on human sperm function after cryopreservation. CryoLetters. 2017; 38(1), 29-36. [view at publisher] [Google Scholar]
38. Fanaei, H., Azizi, Y., & Khayat, S. A review : role of oxidative stress in male infertility. Journal of Fasa University of Medical Sciences. 2013; 3(2), 93-103. [view at publisher] [Google Scholar]
39. Ahmed, H., Jahan, S., Salman, M. M., & Ullah, F. Stimulating effects of Quercetin (QUE) in tris citric acid extender on post thaw quality and in vivo fertility of buffalo (Bubalus bubalis) bull spermatozoa. Theriogenology. 2019; 134, 18-23. [view at publisher] [DOI] [PMID] [Google Scholar]
40. Nass‐Arden, L., & Breitbart, H. Modulation of mammalian sperm motility by quercetin. Molecular reproduction and development.1990; 25(4), 369-373. [view at publisher] [DOI] [PMID] [Google Scholar]
41. Khaki, A. R. A. S. H., Nouri, M., Fathiazad, F., Ahmadi-Ashtiani, H. R., Rastgar, H. O. S. S. E. I. N., & Rezazadeh, S. Protective effects of quercetin on spermatogenesis in streptozotocin-induced diabetic rat. Journal of Medicinal Plants. 2009; 1(29), 57-64. [view at publisher] [Google Scholar]
42. Altintas, R., Ciftci, O., Aydin, M., Akpolat, N., Oguz, F., & Beytur, A. Quercetin prevents docetaxel‐induced testicular damage in rats. Andrologia. 2015; 47(3), 248-256. [view at publisher] [DOI] [PMID] [Google Scholar]
43. Goss, D., Oyeyipo, I. P., Skosana, B. T., Ayad, B. M., & Du Plessis, S. S. Ameliorative potentials of quercetin against cotinine-induced toxic effects on human spermatozoa. Asian Pacific Journal of Reproduction.2015; 5(3), 193-197. [view at publisher] [DOI] [Google Scholar]
44. Al-Omair, M. A., Sedky, A., Ali, A., & Elsawy, H. Ameliorative potentials of quercetin against lead-induced hematological and testicular alterations in Albino rats. Chin J Physiol. 2017; 60(1), 54-61. [DOI] [PMID] [Google Scholar]
45. Chae, M. R., Kang, S. J., Lee, K. P., Choi, B. R., Kim, H. K., Park, J. K., ... & Lee, S. W. Onion (Allium cepa L.) peel extract (OPE) regulates human sperm motility via protein kinase C‐mediated activation of the human voltage‐gated proton channel. Andrology. 2017; 5(5), 979-989. [view at publisher] [DOI] [PMID] [Google Scholar]
46. Shi, X., Hu, H., Ji, G., Zhang, J., Liu, R., Zhang, H., & Li, M. Protective effect of sucrose and antioxidants on cryopreservation of sperm motility and DNA integrity in C57BL/6 mice. Biopreservation and biobanking. 2018; 16(6), 444-450. [view at publisher] [DOI] [PMID] [Google Scholar]
47. Kawasaki, Y., Sakurai, D., Yoshihara, T., Tsuchida, M., Harakawa, S., & Suzuki, H. Effect of quercetin on the motility of cryopreserved canine spermatozoa. Cryobiology. 2020; 96, 50-54. [view at publisher] [DOI] [PMID] [Google Scholar]
48. Rastogi, P. B., & Levin, R. E.Induction of sperm abnormalities in mice by quercetin. Environmental mutagenesis. 1897; 9(1), 79-86. [DOI] [PMID]
49. Li, M. W., Yudin, A. I., VandeVoort, C. A., Sabeur, K., Primakoff, P., & Overstreet, J. W. Inhibition of monkey sperm hyaluronidase activity and heterologous cumulus penetration by flavonoids. Biology of reproduction. 1997; 56(6), 1383-1389. [view at publisher] [DOI] [PMID] [Google Scholar]
50. Vichas et al., 2018
51. Breitbart, H., Rubinstein, S., & Nass-Arden, L. The role of calcium and Ca2+-ATPase in maintaining motility in ram spermatozoa. Journal of Biological Chemistry. 1985; 260(21), 11548-11553. [view at publisher] [DOI] [Google Scholar]
52. Khanduja, K. L., Verma, A., & Bhardwaj, A. Impairment of human sperm motility and viability by quercetin is independent of lipid peroxidation. Andrologia.2001; 33(5), 277-281. [view at publisher] [DOI] [PMID] [Google Scholar]
53. Williams, K. M., & Ford, W. C. L. Effects of Ca‐ATPase inhibitors on the intracellular calcium activity and motility of human spermatozoa. International journal of andrology. 2003; 26(6), 366-375. [view at publisher] [DOI] [PMID] [Google Scholar]
54. Farombi, E. O., Abarikwu, S. O., Adesiyan, A. C., & Oyejola, T. O. Quercetin exacerbates the effects of subacute treatment of atrazine on reproductive tissue antioxidant defence system, lipid peroxidation and sperm quality in rats. Andrologia. 2013; 45(4), 256-265. [view at publisher] [DOI] [PMID] [Google Scholar]
55. . Seifi-Jamadi, A., Kohram, H., Shahneh, A. Z., Ansari, M., & Macías-García, B. Quercetin ameliorate motility in frozen-thawed Turkmen stallions' sperm. Journal of Equine Veterinary Science.2016; 45, 73-77. [view at publisher] [DOI] [Google Scholar]
56. Moretti et al., 2016
57. Ranawat, P., Pathak, C. M., & Khanduja, K. L. A new perspective on the quercetin paradox in male reproductive dysfunction. Phytotherapy Research. 2013; 27(6), 802-810. [view at publisher] [DOI] [PMID] [Google Scholar]
58. Aitken, R. J., & Roman, S. D. Antioxidant systems and oxidative stress in the testes. In Molecular mechanisms in spermatogenesis (pp. 154-171). Springer, New York, NY. 2009. [view at publisher] [DOI] [PMID] [Google Scholar]
59. Asadi, N., Bahmani, M., Kheradmand, A., & Rafieian-Kopaei, M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. Journal of clinical and diagnostic research: JCDR. 2017; 11(5), IE01. [DOI] [PMID] [PMCID] [Google Scholar]
60. Boekelheide, K. Fleming SL, Johnson KJ, Patel SR, Schoenfeld HA. Role of Sertoli cells in injury-associated testicular germ cell apoptosis. Proc Soc Exp Biol Med. 2000; 225, 105-115. [view at publisher] [DOI] [PMID] [Google Scholar]
61. Jahan, S., Iftikhar, N., Ullah, H., Rukh, G., & Hussain, I. Alleviative effect of quercetin on rat testis against arsenic: a histological and biochemical study. Systems Biology in Reproductive Medicine. 2015; 61(2), 89-95. [view at publisher] [DOI] [PMID] [Google Scholar]
62. Zohre, F., Nasri, S., & Kerishchi, P. The effect of Quercetin on pituitary-gonadal axis, sperm parameters and testis tissue in male rats. Quarterly Journal of Sabzevar University of Medical Sciences. 2015; 22(3), 18-25. [view at publisher] [Google Scholar]
63. Jahan, S., Ain, Q. U., & Ullah, H.Therapeutic effects of quercetin against bisphenol A induced testicular damage in male Sprague Dawley rats. Systems biology in reproductive medicine. 2016; 62(2), 114-124. [view at publisher] [DOI] [PMID] [Google Scholar]
64. Sharma, P., Khan, I. A., & Singh, R. Curcumin and quercetin ameliorated cypermethrin and de ltamethrin-induced reproductive system impairment in male wistar rats by upregulating the activity of pituitary-gonadal hormones and steroidogenic enzymes. International journal of fertility & sterility. 2018; 12(1), 72 [PMID] [Google Scholar]
65. Wang, J., Zhu, H., Wang, K., Yang, Z., & Liu, Z. Protective effect of quercetin on rat testes against cadmium toxicity by alleviating oxidative stress and autophagy. Environmental Science and Pollution Research. 2020; 1-9. [view at publisher] [DOI] [PMID] [Google Scholar]
66. Ben Abdallah, F., Zribi, N., & Ammar‐Keskes, L. Antioxidative potential of Quercetin against hydrogen peroxide induced oxidative stress in spermatozoa in vitro. Andrologia. 2011; 43(4), 261-265. [DOI] [PMID] [Google Scholar]
67. Kanter, M., Aktas, C., & Erboga, M. Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin-induced diabetic rat testis. Food and chemical toxicology. 2012; 50(3-4), 719-725. [view at publisher] [DOI] [PMID] [Google Scholar]
68. Sönmez M, Türk G, Çeribaşı S, Çiftçi M, Yüce A, Güvenç M, Özer Kaya Ş, Çay M, Aksakal M. Quercetin attenuates carbon tetrachloride‐induced testicular damage in rats. Andrologia. 2014 Oct;46(8):848-58. [view at publisher] [DOI] [PMID] [Google Scholar]
69. Sadeghi, N., Tavalaee, M., & Nasr-Esfahani, M. H. A Cellular Perspective on the Importance of Oxidative Stress Effects on Sperm. J Ardabil Univ Med Sci. 2018; 18(1), 7-20. [DOI] [Google Scholar]
70. Turner, T. T., & Lysiak, J. J. Oxidative stress: a common factor in testicular dysfunction. Journal of andrology. 2008; 29(5), 488-498. [view at publisher] [DOI] [PMID] [Google Scholar]
71. Bu, T. L., Jia, Y. D., Lin, J. X., Mi, Y. L., & Zhang, C. Q. Alleviative effect of quercetin on germ cells intoxicated by 3-methyl-4-nitrophenol from diesel exhaust particles. Journal of Zhejiang University SCIENCE B. 2012; 13(4), 318-326. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
72. Bu, T., Mi, Y., Zeng, W., & Zhang, C. Protective effect of quercetin on cadmium‐induced oxidative toxicity on germ cells in male mice. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology. 2011; 294(3), 520-526. [view at publisher] [DOI] [PMID] [Google Scholar]
73. Ciftci, O. S. M. A. N., Aydin, M., Ozdemir, I., & Vardi, N. İ. G. A. R. Quercetin prevents 2, 3, 7, 8‐tetrachlorodibenzo‐p‐dioxin‐induced testicular damage in rats. Andrologia. 2012; 44(3), 164-173. [view at publisher] [DOI] [PMID] [Google Scholar]
74. Lovato, F. L., De Oliveira, C. R., Adedara, I. A., Barbisan, F., Moreira, K. L. S., Dalberto, M., ... & Costabeber, I. B. Quercetin ameliorates polychlorinated biphenyls‐induced testicular DNA damage in rats. Andrologia. 2016; 48(1), 51-58. [view at publisher] [DOI] [PMID] [Google Scholar]
75. Adaramoye, O. A., & Akanni, O. O. Protective effects of Artocarpus altilis (Moraceae) on cadmium‐induced changes in sperm characteristics and testicular oxidative damage in rats. Andrologia. 2016; 48(2), 152-163. [view at publisher] [DOI] [PMID] [Google Scholar]
76. Hussein, M. M., Ali, H. A., Saadeldin, I. M., & Ahmed, M. M. Querectin alleviates zinc oxide nanoreprotoxicity in male albino rats. Journal of Biochemical and Molecular Toxicology. 2016; 30(10), 489-496. [view at publisher] [DOI] [PMID] [Google Scholar]
77. Chi, K. K., Zhang, W. H., Wang, G. C., Chen, Z., He, W., Wang, S. G., ... & Chen, H. Comparison of intraperitoneal and intraepididymal quercetin for the prevention of testicular torsion/detorsion-induced injury. Urology. 2017; 99, 106-111. [view at publisher] [DOI] [PMID] [Google Scholar]
78. Benko, F., Hrnčiar, P., Lukáč, N., Kirchner, R., & Tvrdá, E. The in vitro Effect of Quercetin on the Oxidative Properties of Rat Testicular Tissue. Scientific Papers: Animal Science & Biotechnologies/Lucrari Stiintifice: Zootehnie si Biotehnologii. 2020; 53(2). [view at publisher] [Google Scholar]
79. Mi, Y., Tu, L., Wang, H., Zeng, W., & Zhang, C. Supplementation with quercetin attenuates 4‐nitrophenol‐induced testicular toxicity in adult male mice. The Anatomical Record. 2013; 296(10), 1650-1657. [view at publisher] [DOI] [PMID] [Google Scholar]
80. Hu, J., Yu, Q., Zhao, F., Ji, J., Jiang, Z., Chen, X., ... & Yan, M. Protection of Quercetin against Triptolide-induced apoptosis by suppressing oxidative stress in rat Leydig cells. Chemico-Biological Interactions. 2015; 240, 38-46. [view at publisher] [DOI] [PMID] [Google Scholar]
81. Nna, V. U., Ujah, G. A., Mohamed, M., Etim, K. B., Igba, B. O., Augustine, E. R., & Osim, E. E. Cadmium chloride-induced testicular toxicity in male wistar rats; prophylactic effect of quercetin, and assessment of testicular recovery following cadmium chloride withdrawal. Biomedicine & Pharmacotherapy. 2017; 94, 109-123. [view at publisher] [DOI] [PMID] [Google Scholar]
82. Yuan, Y., Ge, S., Lv, Z., Wu, M., Kuang, H., Yang, B., ... & Zhang, D. Attenuation of perfluorooctanoic acid-induced testicular oxidative stress and apoptosis by quercetin in mice. RSC advances. 2017; 7(71), 45045-45052. [view at publisher] [DOI] [Google Scholar]
83. Ujah GA, Nna VU, Agah MI, Omue LO, Leku CB, Osim EE. Effect of quercetin on cadmium chloride‐induced impairments in sexual behaviour and steroidogenesis in male Wistar rats. Andrologia. 2018 Mar;50(2): e12866. [view at publisher] [DOI] [PMID] [Google Scholar]
84. Saber, T. M., Abd El‐Aziz, R. M., & Ali, H. A. Quercetin mitigates fenitrothion‐induced testicular toxicity in rats. Andrologia. 2016; 48(5), 491-500. [view at publisher] [DOI] [PMID] [Google Scholar]
85. Russell, L. D., Alger, L. E., & Nequin, L. G. Hormonal control of pubertal spermatogenesis. Endocrinology. 1987; 120(4), 1615-1632. [view at publisher] [DOI] [PMID] [Google Scholar]
86. Shaw, M. J., Georgapouls, L. E., & Payne, A. H. Synergistic effect of FSH and LH and testicular Δ 5, 3β-hydroxysteroid dehydrogenase isomerase. Application of a new method for the separation of testicular compartments. Endocrinology. 1979; 104, 912-918. [view at publisher] [DOI] [PMID] [Google Scholar]
87. McBride, J. A., & Coward, R. M. Recovery of spermatogenesis following testosterone replacement therapy or anabolic-androgenic steroid use. Asian journal of andrology. 2016; 18(3), 373. [DOI] [PMID] [PMCID] [Google Scholar]
88. McLachlan, R. I., Wreford, N. G., Robertson, D. M., & De Kretser, D. M. Hormonal control of spermatogenesis. Trends in Endocrinology & Metabolism. 1995; 6(3), 95-101. [view at publisher] [DOI] [Google Scholar]
89. Cormier, M., Ghouili, F., Roumaud, P., Martin, L. J., & Touaibia, M. Influence of flavonols and quercetin derivative compounds on MA-10 Leydig cells steroidogenic genes expressions. Toxicology in Vitro. 2017; 44, 111-121. [view at publisher] [DOI] [PMID] [Google Scholar]
90. Samova, S., Patel, C. N., Doctor, H., Pandya, H. A., & Verma, R. J. The effect of bisphenol A on testicular steroidogenesis and its amelioration by quercetin: an in vivo and in silico approach. Toxicology research. 2018; 7(1), 22-31. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
91. ABD AL-FATTAH, A. A., & ABD EL-RAOUF, Y. M. Dietary Supplementation of Quercetin and the Reproductive Functions in Hypertensive Male Rats. 2019. [DOI] [Google Scholar]
92. Adedara, I. A., Subair, T. I., Ego, V. C., Oyediran, O., & Farombi, E. O. Chemoprotective role of quercetin in manganese-induced toxicity along the brain-pituitary-testicular axis in rats. Chemico-biological interactions. 2017; 263, 88-98. [view at publisher] [DOI] [PMID] [Google Scholar]
93. Ahmed, Z. A., Abtar, A. N., Othman, H. H., & Aziz, T. A. Effects of quercetin, sitagliptin alone or in combination in testicular toxicity induced by doxorubicin in rats. Drug Design, Development and Therapy. 2019; 13, 3321. [DOI] [PMID] [PMCID] [Google Scholar]
94. Imam, T. S. M Elhady W, Alam RTM, Mohammed HA. Quercetin mitigates vanadium-pentoxide-induced oxidative stress and reproduc-tive-hormone disruption in male rats. Adv. Anim. Vet. Sci. 2020; 8(5), 490-498. [DOI] [Google Scholar]
95. Khaki, A., Fathiazad, F., Nouri, M., Khaki, A., Maleki, N. A., Khamnei, H. J., & Ahmadi, P. Beneficial effects of quercetin on sperm parameters in streptozotocin‐induced diabetic male rats. Phytotherapy Research. 2010; 24(9), 1285-1291. [view at publisher] [DOI] [PMID] [Google Scholar]
96. Aziz, R. L. A., Abdel-Wahab, A., El-Ela, F. I. A., Hassan, N. E. H. Y., El-Nahass, E. S., Ibrahim, M. A., & Khalil, A. T. A. Dose-dependent ameliorative effects of quercetin and l-Carnitine against atrazine-induced reproductive toxicity in adult male Albino rats. Biomedicine & Pharmacotherapy. 2018; 102, 855-864. [view at publisher] [DOI] [PMID] [Google Scholar]
97. Soleimani, M. M., & Mohammadi, S. M. Study the protective effect of quercetin on testis histological changes and spermatogenesis indexes in adult mice following treatment with dexamethasone. 2019. [view at publisher] [Google Scholar]
98. Mima, M., Greenwald, D., & Ohlander, S. Environmental toxins and male fertility. Current urology reports. 2018; 19(7), 50. [view at publisher] [DOI] [PMID] [Google Scholar]
99. Al-Roujayee, A. Improvement of sexual behavior, sperm quantity and quality by Quercetin in streptozotocin-induced diabetic erectile dysfunction. Asian Pacific Journal of Reproduction. 2017; 6(1), 6. [view at publisher] [DOI] [Google Scholar]
100. Farombi, E. O., Ekor, M., Adedara, I. A., Tonwe, K. E., Ojujoh, T. O., & Oyeyemi, M. O. (2012). Quercetin protects against testicular toxicity induced by chronic administration of therapeutic dose of quinine sulfate in rats. Journal of basic and clinical physiology and pharmacology, 23(1), 39-44. [view at publisher] [DOI] [PMID] [Google Scholar]
101. Badr, G. M., Elsawy, H., Sedky, A., Eid, R., Ali, A., Abdallah, B. M., ... & Abdel-Moneim, A. M. Protective effects of quercetin supplementation against short-term toxicity of cadmium-induced hematological impairment, hypothyroidism, and testicular disturbances in albino rats. Environmental Science and Pollution Research. 2019; 26(8), 8202-8211. [view at publisher] [DOI] [PMID] [Google Scholar]
102. Aldemir, M., Okulu, E. M. R. A. H., Kösemehmetoğlu, K. E. M. A. L., Ener, K., Topal, F., Evirgen, O., ... & Avcı, A. Evaluation of the protective effect of quercetin against cisplatin‐induced renal and testis tissue damage and sperm parameters in rats. Andrologia. 2014; 46(10), 1089-1097. [view at publisher] [DOI] [PMID] [Google Scholar]
103. Abarikwu, S. O., & Farombi, E. O. Quercetin ameliorates atrazine-induced changes in the testicular function of rats. Toxicology and Industrial Health. 2016; 32(7), 1278-1285. [view at publisher] [DOI] [PMID] [Google Scholar]
104. Khodabandeh, Z., Dolati, P., Zamiri, M. J., Mehrabani, D., Bordbar, H., Alaee, S., ... & Azarpira, N. Protective Effect of Quercetin on Testis Structure and Apoptosis Against Lead Acetate Toxicity: A Stereological Study. Biological Trace Element Research. 2020; 1-11. [view at publisher] [DOI] [PMID] [Google Scholar]
105. Mazroa, S. A. Effect of bisphenol A on the cauda epididymis of adult male albino rats and the possible protective role of quercetin: a histological and immunohistochemical study. Egyptian Journal of Histology. 2011; 34(2), 377-390. [view at publisher] [DOI] [Google Scholar]
106. Elwakeel, S. H., & Abd El-Monem, D. D. AMELIORATIVE EFFECT OF MELATONIN AND QUERCETIN AGAINST BISPHENOL A INDUCED REPRODUCTIVE TOXICITY IN MALE ALBINO MICE. 2018. [Google Scholar]
107. Uygur et al., 2013
108. El‐Beltagi, H. S., & Ahmed, M. M. Assessment the protective role of quercetin on acrylamide‐induced oxidative stress in rats. Journal of food biochemistry. 2016; 40(6), 715-723. [view at publisher] [DOI] [Google Scholar]
109. Diao, R., Gan, H., Tian, F., Cai, X., Zhen, W., Song, X., & Duan, Y. G. In vitro antioxidation effect of Quercetin on sperm function from the infertile patients with leukocytospermia. American Journal of Reproductive Immunology. 2019; 82(3), e13155. [view at publisher] [DOI] [PMID] [Google Scholar]
110. Ning, J. Z., Rao, T., Cheng, F., Yu, W. M., Ruan, Y., Yuan, R., ... & Xiao, C. C. Effect of varicocelectomy treatment on spermatogenesis and apoptosis via the induction of heat shock protein 70 in varicocele induced rats. Molecular Medicine Reports. 2017; 16(4), 5406-5412. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
111. Dobrzyńska, M. M., Baumgartner, A., & Anderson, D. Antioxidants modulate thyroid hormone‐and noradrenaline‐induced DNA damage in human sperm. Mutagenesis. 2004; 19(4), 325-330. [view at publisher] [DOI] [PMID] [Google Scholar]
112. McNiven, M. A., & Richardson, G. F. Effect of quercetin on capacitation status and lipid peroxidation of stallion spermatozoa. Cell Preservation Technology. 2006; 4(3), 169-177. [view at publisher] [DOI] [Google Scholar]
113. Taepongsorat, L., Tangpraprutgul, P., Kitana, N., & Malaivijitnond, S. Stimulating effects of quercetin on sperm quality and reproductive organs in adult male rats. Asian journal of andrology. 2008; 10(2), 249-258. [view at publisher] [DOI] [PMID] [Google Scholar]
114. Ben Abdallah, F., Fetoui, H., Zribi, N., Fakhfakh, F., & Keskes, L. Quercetin attenuates lambda cyhalothrin‐induced reproductive toxicity in male rats. Environmental toxicology. 2013; 28(12), 673-680. [view at publisher] [DOI] [PMID] [Google Scholar]
115. Kim, T. H., Yuh, I. S., Park, I. C., Cheong, H. T., Kim, J. T., Park, C. K., & Yang, B. K. Effects of quercetin and genistein on boar sperm characteristics and porcine IVF embyo developments. Journal of Embryo Transfer. 2014; 29(2), 141-148. [view at publisher] [DOI] [Google Scholar]
116. Johinke, D., De Graaf, S. P., & Bathgate, R. Quercetin reduces the in vitro production of H2O2 during chilled storage of rabbit spermatozoa. Animal reproduction science. 2014; 151(3-4), 208-219. [view at publisher] [DOI] [PMID] [Google Scholar]
117. Abd-Ellah, M. F., Aly, H. A. A., Mokhlis, H. A. M., & Abdel-Aziz, A. H. Quercetin attenuates di-(2-ethylhexyl) phthalate-induced testicular toxicity in adult rats. Human & experimental toxicology. 2016; 35(3), 232-243. [view at publisher] [DOI] [PMID] [Google Scholar]
118. Khorsandi L, Orazizadeh M, Moradi-Gharibvand N, Hemadi M, Mansouri E. Beneficial effects of quercetin on titanium dioxide nanoparticles induced spermatogenesis defects in mice. Environmental Science and Pollution Research. 2017 Feb;24(6):5595-606. [view at publisher] [DOI] [PMID] [Google Scholar]
119. Filho, J. S., Corcini, C. D., & Santos, F. C. C. Quercetin in equine frozen semen. CryoLetters. 2017; 38(4), 299-304. [view at publisher] [Google Scholar]
120. Banday, M. N., Lone, F. A., Rasool, F., Rashid, M., & Shikari, A. Use of antioxidants reduce lipid peroxidation and improve quality of crossbred ram sperm during its cryopreservation. Cryobiology. 2017; 74, 25-30. [view at publisher] [DOI] [PMID] [Google Scholar]
121. Divya, S., Madhuri, D., Lakshman, M., & Reddy, A. G. Epididymal semen analysis in testicular toxicity of doxorubicin in male albino wistar rats and its amelioration with quercetin. 2018. [Google Scholar]
122. Karabulut, S., Korkmaz, O., Altun, C. E., Zergeroğlu, A. D., & Keskin, İ. Quercetin Enhances Human Sperm Motility in a Dose and Time Dependent Manner. ACTA Pharmaceutica Sciencia.2019; 58(2). [view at publisher] [DOI] [Google Scholar]
123. Winn, E., & Whitaker, B. D. Quercetin supplementation to the thawing and incubation media of boar sperm improves post-thaw sperm characteristics and the in vitro production of pig embryos. Reproductive Biology. 2020; 20(3), 315-320. [view at publisher] [DOI] [PMID] [Google Scholar]
124. Selim, M. E., Aleisa, N. A., & Daghestani, M. H. Evaluation of the possible protective role of quercetin on letrozole-induced testicular injury in male albino rats. Ultrastructural Pathology. 2013; 37(3), 204-217. [view at publisher] [DOI] [PMID] [Google Scholar]
125. Uygur, R., Yagmurca, M., Alkoc, O. A., Genc, A., Songur, A., Ucok, K., & Ozen, O. A. Effects of quercetin and fish n‐3 fatty acids on testicular injury induced by ethanol in rats. Andrologia. 2014; 46(4), 356-369. [view at publisher] [DOI] [PMID] [Google Scholar]
126. Bharti, S., Misro, M. M., & Rai, U. Quercetin supplementation restores testicular function and augments germ cell survival in the estrogenized rats. Molecular and Cellular Endocrinology. 2014; 383(1-2), 10-20. [view at publisher] [DOI] [PMID] [Google Scholar]
127. Hamza, R. Z., El-Shenawy, N. S., & Ismail, H. A. Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat. Journal of Basic and Clinical Physiology and Pharmacology. 2015; 26(3), 237-251. [view at publisher] [Google Scholar]
128. Abd El-Latief, H. M. Protective effect of quercetin and or zinc against lead toxicity on rat testes. Global J Pharmacol. 2015; 9(4), 366-376. [Google Scholar]
129. Ebokaiwe, Azubuike P., Premendu P. Mathur, and Ebenezer O. Farombi. "Quercetin and vitamin E attenuate Bonny Light crude oil-induced alterations in testicular apoptosis, stress proteins and steroidogenic acute regulatory protein in Wistar rats." Drug and chemical toxicology 39.4 (2016): 424-431. [view at publisher] [DOI] [PMID] [Google Scholar]
130. Baltaci, B. B., Uygur, R., Caglar, V., Aktas, C., Aydin, M., & Ozen, O. A. Protective effects of quercetin against arsenic‐induced testicular damage in rats. Andrologia. 2016; 48(10), 1202-1213. [view at publisher] [DOI] [PMID] [Google Scholar]
131. Chi, K. K., Zhang, W. H., Chen, Z., Cui, Y., He, W., Wang, S. G., ... & Wang, G. C. Comparison of quercetin and resveratrol in the prevention of injury due to testicular torsion/detorsion in rats. Asian journal of andrology. 2016; 18(6), 908. [PMID] [Google Scholar]
132. Khorsandi, L., Orazizadeh, M., Moradi-Gharibvand, N., Hemadi, M., & Mansouri, E. Beneficial effects of quercetin on titanium dioxide nanoparticles induced spermatogenesis defects in mice. Environmental Science and Pollution Research. 2017; 24(6), 5595-5606. [view at publisher] [DOI] [PMID] [Google Scholar]
133. Ujah, G. A., Nna, V. U., Agah, M. I., Omue, L. O., Leku, C. B., & Osim, E. E. Effect of quercetin on cadmium chloride‐induced impairments in sexual behaviour and steroidogenesis in male Wistar rats. Andrologia. 2018; 50(2), e12866. [view at publisher] [DOI] [PMID] [Google Scholar]
134. Suzen, A., Tekin, L., Erdemli, M. E., Erturk, N., Aksungur, Z., & Aktas, S. Protective effects of Hypericum perforatum and quercetin in a rat model of ischemia/reperfusion injury of testes. European Journal of Pediatric Surgery. 2018; 28(01), 096-100. [view at publisher] [DOI] [PMID] [Google Scholar]
135. Abarikwu, S. O., Simple, G., & Onuoha, C. S. Morphometric Evaluation of the Seminiferous Tubules and the Antioxidant Protective Effects of Gallic Acid and Quercetin in the Testis and Liver of Butyl Phthalate Treated Rats. Indian Journal of Clinical Biochemistry. 2018; 1-12. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]
136. Akinmoladun, A. C., Olaniyan, O. O., Famusiwa, C. D., Josiah, S. S., & Olaleye, M. T. Ameliorative effect of quercetin, catechin, and taxifolin on rotenone-induced testicular and splenic weight gain and oxidative stress in rats. Journal of Basic and Clinical Physiology and Pharmacology. 2020; 1(ahead-of-print). [view at publisher] [DOI] [PMID] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Jorjani Biomedicine Journal

Designed & Developed by : Yektaweb