Volume 8, Issue 4 (12-2020)                   Jorjani Biomed J 2020, 8(4): 17-25 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini S A. The Effects of Continued Training and High Intensity Interval Training along with Citrus Aurantium on Aerobic Power, Heart Weight, Adipose Tissue Weight and Body Weight of Elderly Rats. Jorjani Biomed J. 2020; 8 (4) :17-25
URL: http://goums.ac.ir/jorjanijournal/article-1-770-en.html
Department of Sport Physiology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran , alihoseini_57@miau.ac.ir
Abstract:   (287 Views)
Background and Objective: Nutrition and physical activity are two factors which affecting the control of body composition and cardiorespiratory fitness in the elderly population. Present study aimed to investigate the effects of continued training (CT) and high intensity interval training (HIIT) along with Citrus aurantium (Ca) on aerobic power and body composition of elderly rats.
Material And Methods: In this experimental study, 42 elderly rats with mean age of 14- 18 months were divided into 7 groups of 6 rats including: control, sham, HIIT, CT, HIIT+Ca and CT+Ca groups. During eight weeks, the Ca groups received 300 mg/kg Ca peritoneally and CT groups ran on treadmill for five sessions per week with intensity of 85%- 100% of VO2max and speed of 15-25 m/min as well as HIIT groups ran on treadmill for five sessions per week with intensity of 65% of VO2max and speed of 20-25 m/min.
Results: CT (P=0.04), HIIT+Ca (P=0.04), and CT+Ca (P=0.04) significantly increased aerobic power; HIIT+Ca (P=0.02) and CT+Ca (P=0.03) significantly increased heart weight and HIIT+Ca significantly decreased adipose tissue weight (P=0.01).
Conclusion: Although CT can improve aerobic power in elderly rats, nevertheless it seems that CT and HIIT along with Ca administration can have more favorable effects on the body composition of elderly rats.
Full-Text [PDF 515 kb]   (120 Downloads) |   |   Full-Text (HTML)  (78 Views)  
Type of Article: Original article | Subject: Health
Received: 2020/10/15 | Accepted: 2020/11/3 | Published: 2020/11/30

1. Walsh J, Scribbans T, Bentley R, Kellawan J, Gurd B, Tschakovsky M. Neurotrophic growth factor responses to lower body resistance training in older adults. Appl Physiol Nutr Metab. 2016;41(3):315-23. [DOI:10.1139/apnm-2015-0410]
2. Kaikhosravi F, Daryanoosh F, Koushkie Jahromi M, Nemati J. The Effect of High Intensity Interval Training with Genistein on Biomechanical Properties of Femur Bone in Elderly Female Rats. Jorjani Biomed J [Internet]. 2020;8(1). Available from: http://goums.ac.ir/jorjanijournal/article-1-713-en.html [DOI:10.29252/jorjanibiomedj.8.1.51]
3. Wilkinson D, Piasecki M, Atherton P. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev. 2018;47:123-132. [DOI:10.1016/j.arr.2018.07.005]
4. Lee H, Oh B. Aging and arterial stiffness. Circ J. 2010;74(11):2257-62. [DOI:10.1253/circj.CJ-10-0910]
5. Yazdanparast Chaharmahali B, Azarbayjani MA, Peeri M, Farzanegi Arkhazloo P. Increased Expression of Bax and Bcl2 Apoptosis Biomarkers in the Heart of Old Female Rats After Interval Training and Curcumin Consumption. Jorjani Biomed J [Internet]. 2018;6(4). Available from: http://goums.ac.ir/jorjanijournal/article-1-547-en.html [DOI:10.29252/jorjanibiomedj.6.4.40]
6. Amini Najafabadi B, Keshavarz S, Asgary S, Azarbarzin mehrdad. The 8-week aerobic exercise improves blood sugar، HbA1c and lipid profile in women with type 2 diabetes: A Controlled Randomized Clinical Trial. Jorjani Biomed J [Internet]. 2020;8(3). Available from: http://goums.ac.ir/jorjanijournal/article-1-752-en.html
7. Mabhout Moghadam T, Mosaferi Ziaaldini M, Fathi M, Attarzadeh Hoseini S. Review the Effect of High Intensity Interval Training on Obesity- Related Hormones. Res Sport Sci Med Plants. 2020;1(1):1-18.
8. Rauofi A, Farsi S, Hosseini S. Effect of Resistance Training Along with Curcumin Supplementation on Expression of Some Regulator Genes Associated with Cardiac Muscle Structure in Obese Rats. Thrita. 2020;9(2):e106322. [DOI:10.5812/thrita.106322]
9. Ghadery B, Ghazalian F, Hosseini S, Abed Natanzy H, Shamsoddini H. Effect of High-Intensity Interval Training with Eryngium Campestre on Lipid Profile and Glycemic Indices in High-Fat Diet-Induced Obese Rats. Hormozgan Med J. 2020;24(2):e98982. [DOI:10.5812/hmj.98982]
10. Azizi R, Mohammadi A, Khajehlandi A. The effect of aqueous extract of barberry and selected training on some blood factors in men with type2 diabetes (AQuasi-Experimental Study). Jorjani Biomed J [Internet]. 2020;8(4). Available from: http://goums.ac.ir/jorjanijournal/article-1-764-en.html
11. Yahyaei B, Nouri M, Matmir H. Healing effects of Ziziphus jujuba hydroalcoholic extract with exercise training on histopathological changes of male wistar rats testicular tissue in response to Boldenone steroid administration. Jorjani Biomed J [Internet]. 2018;6(1). Available from: http://goums.ac.ir/jorjanijournal/article-1-588-en.html [DOI:10.29252/jorjanibiomedj.6.1.12]
12. Chaabane M, Elwej A, Ghorbel I, Boudawara T, Zeghal Z, Soudani N. Citrus aurantium L. peel extract mitigates hexavalent chromium-induced oxidative stress and cardiotoxicity in adult rats. Pharm Biomed Res. 2017;3(2):8-18. [DOI:10.29252/pbr.3.2.8]
13. Keshtkar S, Komeili G, Keshavarzi F, Jahantigh M. Cardio Protective Effects of Hydroalcholic Citrus Aurantium Extract on Myocardial Infarction Induced by Isoproterenol in Male Rats. J Cardiol Curr Res. 2017;10(2):00359. [DOI:10.15406/jccr.2017.10.00359]
14. He W, Li Y, Liu M, Yu H, Chen Q, Chen Y, et al. Citrus aurantium L. and its flavonoids regulate TNBS-induced inflammatory bowel disease through anti-inflammation and suppressing isolated jejunum contraction. Int J Mol Sci. 2018;19(10):3057. [DOI:10.3390/ijms19103057]
15. Yazdanparast Chaharmahali B, Azarbayjani M, Peeri M, Farzanegi Arkhazloo P. The Effect of Moderate and High Intensity Interval Trainings on Cardiac Apoptosis in the Old Female Rats. Rep Heal Care. 2018;4(1):26-35.
16. Li F, Sun L, Zhu M, Li T, Gao H, Wu D, et al. Beneficial alterations in body composition, physical performance, oxidative stress, inflammatory markers, and adipocytokines induced by long-term high-intensity interval training in an aged rat model. Exp Gerontol. 2018;113:150-62. [DOI:10.1016/j.exger.2018.10.006]
17. Azarian F, Farsi S, Hosseini S, Azarbayjani M. The Effect of Endurance Training and Crocin Consumption on Anxiety-like Behaviors and Aerobic Power in Rats with Alzheimer's. Iran J Psychiatry Behav Sci. 2019;13(4):e89011. [DOI:10.5812/ijpbs.89011]
18. Constans A, Pin-Barre C, Molinari F, Temprado J, Brioche T, Pellegrino C, et al. High-intensity interval training is superior to moderate intensity training on aerobic capacity in rats: Impact on hippocampal plasticity markers. Behav Brain Res. 2020;398:112977. [DOI:10.1016/j.bbr.2020.112977]
19. Kaikhosravi F, Daryanoosh F, Koushki Jahromi M, Neamati J. Psycho- physiologic Effects of High Intensity Interval Trainings in Aged Ovariectomized Rats: a Pilot Study. Rep Heal Care. 2019;5(3):1-7.
20. Mirhosseini M, Esfarjani F, Marandi M, Khalilzadeh S, Mirhosseini H. The Effect of Yoga Exercise on Parameters of Type II Diabetes. JSSU. 2014;22(1):880-91.
21. Liao J, LI Y, Zeng F, Wu Y. Regulation of mTOR pathway in exercise-induced cardiac hypertrophy. Int J Sport Med. 2015;36(05):343-50. [DOI:10.1055/s-0034-1395585]
22. DeBosch B, Treskov I, Lupu T, Weinheimer C, Kovacs A, Courtois M. Akt1 is required for physiological cardiac growth. Circulation. 2006;113(17):2097-104. [DOI:10.1161/CIRCULATIONAHA.105.595231]
23. Alfarafisa N, Kitaguchi K, Yabe T. The Aging of Skeletal Muscle and Potential Therapeutic Effects of Extracts from Edible and Inedible Plants. Rev Agric Sci. 2020;8(70-88). [DOI:10.7831/ras.8.0_70]
24. Ramezannezhad P, Heidari-Soureshjani S, Suhan T. Protective effects of some medicinal plants against myocardial hypoxia. Int J Biol Chem. 2019;12(1):112-27. [DOI:10.26577/ijbch-2019-1-i13]
25. Lee H, Venkatarame Gowda Saralamma V, Kim S, Ha S, Raha S, Lee W, et al. Pectolinarigenin induced cell cycle arrest, autophagy, and apoptosis in gastric cancer cell via PI3K/AKT/mTOR signaling pathway. Nutrients. 2018;10(8):1043. [DOI:10.3390/nu10081043]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2021 All Rights Reserved | Jorjani Biomedicine Journal

Designed & Developed by : Yektaweb