1. Cox DR. Analysis of survival data: Routledge; 2018. [
view at publisher] [
DOI] [
Google Scholar]
2. Klein JP, Moeschberger ML. Survival analysis: techniques for censored and truncated data: Springer Science & Business Media; 2006. [
view at publisher] [
Google Scholar]
3. Elashoff R, Li N. Joint modeling of longitudinal and time-to-event data: CRC Press; 2016. [
view at publisher] [
DOI] [
Google Scholar]
4. David CR. Regression models and life tables (with discussion). Journal of the Royal Statistical Society. 1972;34(2):187-220. [
view at publisher] [
DOI] [
Google Scholar]
5. Gordon L, Olshen RA. Tree-structured survival analysis. Cancer treatment reports. 1985;69(10):1065-9. [
Google Scholar]
6. Hothorn T, Bühlmann P, Dudoit S, Molinaro A, Van Der Laan MJ. Survival ensembles. Biostatistics. 2005;7(3):355-73. [
view at publisher] [
DOI] [
Google Scholar]
7. Zhang H, Singer BH. Recursive partitioning and applications: Springer Science & Business Media; 2010. [
view at publisher] [
DOI] [
Google Scholar]
8. Bou-Hamad I, Larocque D, Ben-Ameur H. A review of survival trees. Statistics Surveys. 2011;5:44-71. [
DOI] [
Google Scholar]
9. Ishwaran H, Kogalur UB. Random survival forests for R. R news. 2007;7(2):25-31. [
Google Scholar]
10. Ishwaran H, Lu M. Random survival forests. Wiley StatsRef: Statistics Reference Online. 2008:1-13. [
view at publisher] [
DOI] [
Google Scholar]
11. Breiman L. Random forests. Machine learning. 2001;45(1):5-32. [
view at publisher] [
DOI] [
Google Scholar]
12. LeBlanc M, Crowley J. Relative risk trees for censored survival data. Biometrics. 1992;June 1:411-25. [
DOI] [
Google Scholar]
13. Dietrich S, Floegel A, Troll M, Kühn T, Rathmann W, Peters A, et al. Random Survival Forest in practice: a method for modelling complex metabolomics data in time to event analysis. International journal of epidemiology. 2016;45(5):1406-20. [
DOI] [
Google Scholar]
14. Nasejje JB, Mwambi H, Dheda K, Lesosky M. A comparison of the conditional inference survival forest model to random survival forests based on a simulation study as well as on two applications with time-to-event data. BMC medical research methodology. 2017;17(1):115-42. [
DOI] [
Google Scholar]
15. Nasejje JB, Mwambi H. Application of random survival forests in understanding the determinants of under-five child mortality in Uganda in the presence of covariates that satisfy the proportional and non-proportional hazards assumption. BMC research notes. 2017;10(1):459-77. [
DOI] [
Google Scholar]
16. Adham D, Abbasgholizadeh N, Abazari M. Prognostic factors for survival in patients with gastric cancer using a random survival forest. Asian Pacific journal of cancer prevention: APJCP. 2017;18(1):129-34. [
Google Scholar]
17. Miao F, Cai Y-P, Zhang Y-T, Li C-Y, editors. Is random survival forest an alternative to Cox proportional model on predicting cardiovascular disease? 6TH European conference of the international federation for medical and biological engineering; 2015: Springer. [
DOI] [
Google Scholar]
18. Yosefian I, Mosa Farkhani E, Baneshi MR. Application of random forest survival models to increase generalizability of decision trees: a case study in acute myocardial infarction. Computational and mathematical methods in medicine. 2015:1-7. [
DOI] [
Google Scholar]
19. Wang H, Li G. A Selective Review on Random Survival Forests for High Dimensional Data. Quantitative bio-science. 2017;36(2):85. [
DOI] [
Google Scholar]
20. Ishwaran H, Kogalur UB, Chen X, Minn AJ. Random survival forests for high‐dimensional data. Statistical Analysis and Data Mining: The ASA Data Science Journal. 2011;4(1):115-32. [
DOI] [
Google Scholar]
21. Abdolahi A. Effects of socio-economic rationality dimensions on childbearing behavior in Tehran. National Population Studies & Comprehensive Management Institute,; 2017. [
Google Scholar]
22. Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical statistics. 2006;15(3):651-74. [
DOI] [
Google Scholar]
23. Krętowska M, editor Random forest of dipolar trees for survival prediction. International Conference on Artificial Intelligence and Soft Computing; 2006: Springer. [
DOI] [
Google Scholar]
24. Hothorn T, Lausen B, Benner A, Radespiel‐Tröger M. Bagging survival trees. Statistics in medicine. 2004;23(1):77-91. [
DOI] [
Google Scholar]
25. Mogensen UB, Ishwaran H, Gerds TA. Evaluating random forests for survival analysis using prediction error curves. Journal of statistical software. 2012;50(11):1-23. [
DOI] [
Google Scholar]
26. Gerds TA, Schumacher M. Consistent estimation of the expected Brier score in general survival models with right‐censored event times. Biometrical Journal. 2006;48(6):1029-40. [
DOI] [
Google Scholar]
27. Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of prognostic classification schemes for survival data. Statistics in medicine. 1999;18(17‐18):2529-45.
https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5 [
DOI] [
Google Scholar]
28. Ehrlinger J. ggRandomForests: Exploring random forest survival. arXiv preprint arXiv:161208974. 2016. [
Google Scholar]
29. Ishwaran H, Kogalur UB, Gorodeski EZ, Minn AJ, Lauer MS. High-dimensional variable selection for survival data. Journal of the American Statistical Association. 2010;105(489):205-17. [
DOI] [
Google Scholar]
30. Weathers B. Comparision of Survival Curves Between Cox Proportional Hazards, Random Forests, and Conditional Inference Forests in Survival Analysis. 2017:1-35. [
Google Scholar]
31. Hsich E, Gorodeski EZ, Blackstone EH, Ishwaran H, Lauer MS. Identifying important risk factors for survival in patient with systolic heart failure using random survival forests. Circulation: Cardiovascular Quality and Outcomes. 2011;4(1):39-45. [
DOI] [
Google Scholar]
32. Das A, Abdel-Aty M, Pande A. Using conditional inference forests to identify the factors affecting crash severity on arterial corridors. Journal of safety research. 2009;40(4):317-27. [
DOI] [
Google Scholar]