دوره 10، شماره 1 - ( 1-1401 )                   جلد 10 شماره 1 صفحات 25-13 | برگشت به فهرست نسخه ها


XML English Abstract Print


چکیده:   (3164 مشاهده)
One of the major challenges in the field of tissue engineering is the production of scaffolding in nano-scale. The study of structural-functional connections in pathological and normal tissues with biologically active alternatives or engineered materials has been developed. Extracellular Matrix (ECM) is a suitable environment consisting of gelatin, elastin and collagen types I, II and III, etc., which are provided to cells for wound healing, embryonic development, cell growth and organogenesis, and. They also play a role in transmitting structural integrity and overall strength to tissues. In tissues, ECM manufacturers are structurally 50 to 500 nm in diameter; nanotechnology must be used to create scaffolds or ECM analogues. Recent advances in nanotechnology have led to the development of ECM-engineered analogues in various ways. To date, three self-assembly, phase separation and electrospinning techniques have been developed to activate nanofiber scaffolds. With these advances and the construction of a "biomimetic" environment, engineered tissue or scaffolding is now possible for a variety of tissues. This study will discuss the three existing methods for creating Tissue engineering scaffolds that are able to mimic new tissue, as well as the discovery of materials for use in scaffolding.
متن کامل [PDF 823 kb]   (907 دریافت)    
نوع مقاله: مروری | موضوع مقاله: علوم پایه پزشکی
دریافت: 1400/10/13 | پذیرش: 1400/11/3 | انتشار: 1401/1/10

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.