1. Klein S, Gastaldelli A, Yki-Järvinen H, Scherer PE. Why does obesity cause diabetes? Cell Metab. 2022;34(1):11-20. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
2. Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122(7):481-6. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
3. Moreno-Indias I, Tinahones FJ. Impaired adipose tissue expandability and lipogenic capacities as ones of the main causes of metabolic disorders. J Diabetes Res. 2015;2015(1):970375. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
4. Braunwald E. Diabetes, heart failure, and renal dysfunction: the vicious circles. Prog Cardiovasc Dis. 2019;62(4):298-302. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
5. Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects.Rev Endocr Metab Disord. 2010;11(1):31-9. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
6. Li Y, Feng YF, Liu XT, Li YC, Zhu HM, Sun MR, et al. Songorine promotes cardiac mitochondrial biogenesis via Nrf2 induction during sepsis. Redox Biol. 2021;38:101771. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
7. Piantadosi CA, Carraway MS, Babiker A, Suliman HB. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res. 2008;103(11):1232-40. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
8. Sato S, Suzuki J, Hirose M, Yamada M, Zenimaru Y, Nakaya T, et al. Cardiac overexpression of perilipin 2 induces atrial steatosis, connexin 43 remodeling, and atrial fibrillation in aged mice. Am J Physiol Endocrinol Metab. 2019;317(6):E1193-204. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
9. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 2011;121(6):2102-10. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
10. Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res. 2023;119(10):1905-14. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
11. Straub BK, Gyoengyoesi B, Koenig M, Hashani M, Pawella LM, Herpel E, et al. Adipophilin/perilipin‐2 as a lipid droplet‐specific marker for metabolically active cells and diseases associated with metabolic dysregulation. Histopathology. 2013;62(4):617-31. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
12. Huang W, Gao F, Zhang Y, Chen T, Xu C. Lipid droplet-associated proteins in cardiomyopathy. Ann Nutr Metab. 2022;78(1):1-13. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
13. Kaur S, Auger C, Barayan D, Shah P, Matveev A, Knuth CM, et al. Adipose‐specific ATGL ablation reduces burn injury‐induced metabolic derangements in mice. Clin Transl Med. 2021;11(6):e417. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
14. Prats C, Donsmark M, Qvortrup K, Londos C, Sztalryd C, Holm C, et al. Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine. J Lipid Res. 2006;47(11):2392-9. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
15. Cereijo L, Gullón P, Del Cura I, Valadés D, Bilal U, Badland H, et al. Exercise facilities and the prevalence of obesity and type 2 diabetes in the city of Madrid. Diabetologia. 2022;65(1):150-8. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
16. Bennetsen SL, Feineis CS, Legaard GE, Lyngbæk MP, Karstoft K, Ried-Larsen M. The impact of physical activity on glycemic variability assessed by continuous glucose monitoring in patients with type 2 diabetes mellitus: a systematic review. Front Endocrinol (Lausanne). 2020;11:486. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
17. Esefeld K, Kress S, Behrens M, Zimmer P, Stumvoll M, Thurm U, et al. Diabetes, sports and exercise. Exp Clin Endocrinol Diabetes. 2021;129(S01):S52-9. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
18. Yu H, Zhao X, Wu X, Yang J, Wang J, Hou L. High-intensity interval training versus moderate-intensity continuous training on patient quality of life in cardiovascular disease: A systematic review and meta-analysis. Sci Rep. 2023;13(1):13915. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
19. Chiş I, Baltaru D, Dumitrovici A, Coseriu A, Radu B, Moldovan R, et al. Protective effects of quercetin from oxidative/nitrosative stress under intermittent hypobaric hypoxia exposure in the rat's heart. Physiol Int. 2018;105(3):233-46. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
20. Kamboj S, Mukhija M, Monga J, Singla R, Chaudhary J. Mechanistic investigation of Quercetin in the management of complications of Diabetes mellitus by Network Pharmacology. J Mol Chem. 2024;4(1):684. [
View at Publisher] [
Google Scholar]
21. Egan B, Sharples AP. Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiol Rev. 2023;103(3):2057-170. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
22. Engel LE, de Souza FLA, Giometti IC, Okoshi K, Mariano TB, Ferreira NZ, et al. The high-intensity interval training mitigates the cardiac remodeling in spontaneously hypertensive rats. Life Sci. 2022;308:120959. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
23. Ramos SV, Turnbull PC, MacPherson RE. Adipose tissue depot specific differences of PLIN protein content in endurance trained rats. Adipocyte. 2016;5(2):212-23. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
24. Khajehlandi M, Bolboli L. The effect of eight weeks of high-intensity interval and moderate-intensity continuous training with quercetin supplementation on the expression of PGC1-α and NRF-1 genes in the heart tissue of obese diabetic male rats. Feyz Med Sci J. 2024;28(1):58-67. [
View at Publisher] [
DOI] [
Google Scholar]
25. Eitah HE, Maklad YA, Abdelkader NF, El Din AAG, Badawi MA, Kenawy SA. Modulating impacts of quercetin/sitagliptin combination on streptozotocin-induced diabetes mellitus in rats. Toxicol Appl Pharmacol. 2019;365:30-40. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
26. Pengam M, Goanvec C, Moisan C, Simon B, Albacète G, Féray A, et al. Moderate intensity continuous versus high intensity interval training: Metabolic responses of slow and fast skeletal muscles in rat. Plos one. 2023;18(10):e0292225. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
27. Dupas J, Feray A, Guernec A, Pengam M, Inizan M, Guerrero F, et al. Effect of personalized moderate exercise training on Wistar rats fed with a fructose enriched water. Nutr Metab (Lond). 2018;15(1):69. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
28. Bahadoran Z, Golzarand M, Mirmiran P, Saadati N, Azizi F. The association of dietary phytochemical index and cardiometabolic risk factors in adults: Tehran Lipid and Glucose Study. J Hum Nutr Diet. 2013;26(S1):145-53. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
29. Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res. 2019;33(12):3140-52. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
30. Boots AW, Drent M, de Boer VC, Bast A, Haenen GR. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clin Nutr. 2011;30(4):506-12. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
31. Azeem M, Hanif M, Mahmood K, Ameer N, Chughtai FRS, Abid U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polym Bull (Berl). 2023;80(1):241-62. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
32. Cherry AD, Piantadosi CA. Regulation of mitochondrial biogenesis and its intersection with inflammatory responses. Antioxid Redox Signal. 2015;22(12):965-76. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
33. Michaličková D, Hrnčíř T, Canová NK, Slanař O. Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis. Eur J Pharmacol. 2020;873:172973. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
34. Done AJ, Gage MJ, Nieto NC, Traustadóttir T. Exercise-induced Nrf2-signaling is impaired in aging. Free Radic Biol Med. 2016;96:130-8. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
35. Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015;88(Pt B):179-88. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
36. Pino-de la Fuente F, Bórquez JC, Díaz-Castro F, Espinosa A, Chiong M, Troncoso R. Exercise regulation of hepatic lipid droplet metabolism. Life Sci. 2022;298:120522. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
37. Shaw CS, Shepherd SO, Wagenmakers AJ, Hansen D, Dendale P, Van Loon LJ. Prolonged exercise training increases intramuscular lipid content and perilipin 2 expression in type I muscle fibers of patients with type 2 diabetes. Am J Physiol Endocrinol Metab. 2012;303(9):E1158-65. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
38. Fritsch LJ, McCaulley SJ, Johnson CR, Lawson NJ, Gorres-Martens BK. Exercise prevents whole body type 2 diabetes risk factors better than estradiol replacement in rats. J Appl Physiol. 2021;131(5):1520-31. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
39. Sugimoto T, Uchitomi R, Onishi T, Kamei Y. A combination of exercise and calorie restriction improves the development of obesity-related type 2 diabetes mellitus in KKAy mice. Biosci Biotechnol Biochem. 2023;87(1):108-13. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
40. Li R, Li G, Hai Y, Li T, Bian Y, Ma T. The effect of aerobic exercise on the lipophagy of adipose tissue in obese male mice. Chem Phys Lipids. 2022;247:105225. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
41. Yang Y, Li X, Liu Z, Ruan X, Wang H, Zhang Q, et al. Moderate Treadmill Exercise Alleviates NAFLD by Regulating the Biogenesis and Autophagy of Lipid Droplet. Nutrients. 2022;14(22):4910. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
42. Pino-de la Fuente F, Quezada L, Sepúlveda C, Monsalves-Alvarez M, Rodríguez JM, Sacristan C, et al. Exercise regulates lipid droplet dynamics in normal and fatty liver. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(12):158519. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
43. Louche K, Badin P-M, Montastier E, Laurens C, Bourlier V, de Glisezinski I, et al. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. J Clin Endocrinol Metab. 2013;98(12):4863-71. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
44. Kim C-H, Kim M-S, Youn J-Y, Park H-S, Song H-S, Song KH, et al. Lipolysis in skeletal muscle is decreased in high-fat-fed rats. Metabolism. 2003;52(12):1586-92. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
45. Wu B, Xu C, Tian Y, Zeng Y, Yan F, Chen A, et al. Aerobic exercise promotes the expression of ATGL and attenuates inflammation to improve hepatic steatosis via lncRNA SRA. Sci Rep. 2022;12(1):5370. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]