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Abstract 

Fibrosis is a common and mostly progressive pathological outcome in various 

chronic inflammatory disorders. Dermal (skin) fibrosis, which is associated 

with intense skin lesions, is a result of an uncontrolled healing process in the 

dermis, particularly disproportionate fibroblast proliferation and Extracellular 

Matrix (ECM) production. Animal models are substantial tools in biomedical 

investigations and have been considerably employed to evaluate miscellaneous 

features of diseases that cannot be demonstrated otherwise in humans. To date, 

various skin fibrosis models have been generated, including the transgene 

and/or genetic models and chemical and drug-induced models. However, 

genetic models are sophisticated and need access to convoluted methods. 

Accordingly, the introduction of affordable and easy to generate fibrosis 

models in the skin is crucial. Here, we aimed to introduce the chemical/drug-

induced skin fibrosis animal models to provide an updated list of available 

approaches. 
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Introduction 

Fibrosis is typically defined as the runaway 

production, activation, and deposition of 

collagenous or non-collagenous extracellular 

matrix (ECM) compartments in organs and tissues 

(1). Several chronic inflammatory disorders are 

associated with skin fibrosis as the superior 

complication, including scleroderma (2), 

rheumatoid arthritis (RA)(3), and systemic lupus 

erythematosus (SLE) (4). Although collagen 

deposition is an integral and commonly reversible 

feature of the wound healing process, the common 

tissue repair strategy can unwind into a 

progressively irreversible fibrotic response if the 

tissue injury is severe and redundant or if the 

wound healing process evolves dysregulated (5). 

"Dermal fibrosis" (inflated skin scarring) is an 

outcome of a bloated healing process, mainly the 

overblown of proliferation in fibroblasts and 

production of Extracellular Matrix (ECM) in the 

dermis. The clinical manifestations of skin 

fibrosis are mostly thickened, shrunk, and 

solidified areas of skin. Skin fibrosis may 

eventually lead to dermal contractures that affect 

the capability of bending or unfolding the joints. 

(6). Likewise, fibrosis may influence tumor 

aggression and metastasis, chronic graft rejection 

(CGR), and the pathogenesis of numerous 

advanced myopathies (5). The final stages of 

scleroderma in human skin involve additional 

collagen deposition in the dermis with failure of 

adnexal arrangements and connected adipose 

tissue (7).  

 The animal models are essential means widely 

employed to scrutinize the crucial characteristics 

of the diseases that otherwise cannot be 

investigated at a distance within the human 

samples (8). They allow the exploration of genes 

or therapeutic targets without initial endangerment 

to humans. Rodents' physiology, anatomy, genetic 

composition, and even behavior is similar to 

humankind, while above 95% of the mouse 

genome is identical to humans (9). Due to the 

accelerated lifespan of rodents, their small size, 

demanding smaller space to maintain, and the 

cost-effectiveness of their breeding, many disease 

models have been developed based on these 

animals, and diverse reagents have been 

developed for their application (10). Not 

enclosing all the animal models utilized to 

investigate the pathogenesis of skin fibrosis, the 

current review article (Table 1) focuses on the 

benefits and impediments of some of the more 

generally habituated and a number of the lately 

designed models. Nevertheless, the construction 

of scars and pathological fibrotic conditions result 

from multiple pathways working together. Some 

of the represented models provide suitable options 

to study distinctive pathways in detail or even the 

function of unique molecules during fibrosis (11). 

Inducible models of skin fibrosis 

Animal models that induce fibrosis in the mice are 

of particular significance because they authorize 

researchers to inspect the initiating occasions of 

fibrosis and the possibility of studying several 

mechanisms. Accordingly, these inducible models 

have been demonstrated to be immensely 

practical. However, few chemical compounds can 

induce skin fibrosis in mice, and sclerodermatous 

graft versus host disease (GVHD) is a significant 

challenge while working with these models (12). 

Bleomycin induced model of skin fibrosis 

Initially sequestered from Streptomyces 

verticillus, Bleomycin is a chemical agent used in 

cancer chemotherapy and has evolved into a 

potent initiator of tissue damage and fibrosis 

induction in mice and different animal species. It 

can induce both dermal and lung fibrosis models 

and is suitable for studying SSc-related 

complications and mechanisms in a system (13). 

Repetitious administration of bleomycin (the 

Highlights  

 To date, various skin fibrosis models have been 

generated, including the transgene and/or 

genetic models and chemical and drug-induced 

models.  

 Here, we aimed to introduce the chemical/drug-

induced skin fibrosis animal models to provide 

an updated list of available approaches. 
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number of repeats varies in different protocols) 

may induce skin fibrosis limited to the location of 

the inoculated zone. Several protocols have been 

suggested to generate bleomycin-induced dermal 

fibrosis (14). In general, injecting 100 mg of 

bleomycin subcutaneously into the shaved 

locations of the mice's skin daily for 1–4 weeks 

may induce local skin fibrosis. The magnitude of 

fibrosis in the bleomycin-induced model relies on 

the treated mice's genetic background, gender, and 

health conditions (11). Although the detailed 

mechanisms by which bleomycin generates 

dermal fibrosis are undefined, several research 

studies declare that bleomycin can perturb cell 

cycle progression by inducing the G2-phase cell 

cycle arrest, exerting genotoxicity, and cleaving 

DNA (15). This model is widely employed to 

study the roles of distinctive inflammatory 

mediators, molecules, and cellular components, 

during fibrogenesis and investigating diverse 

antifibrotic mechanisms (11). 

Table 1. Major characteristics of inducible animal models of skin fibrosis 

Abbreviations: CFA, Freund’s complete adjuvant; GVHD, graft versus host disease. N/A: no information available or not applicable

Administration of toxic chemical compounds 

Vinyl chloride and hypochlorous acid (HOCl) are 

the most widely used chemical compounds which 

can induce dermal fibrosis after local 

administration. An enzyme called Mixed-Function 

Oxidase (MFO) metabolizes and activates vinyl 

chloride, a carcinogenic chemical. The 

consequential reactive metabolites eventually 

result in DNA base-pair shifts during transcription 

or crosslinks (16). In correlation with the 

scleroderma-like syndrome, it is believed that 

Inducible 
models 

Induction strategy  Characteristics Vascular 
Diseases 

Inflammatory 
conditions 

Targeted 
autoantibodies  

Advantages Limitations 

Bleomycin-
induced skin 

fibrosis model 

subcutaneous daily 
administration of 

100 mg 
BLEO for 1-4 

weeks. 

Skin and lung fibrosis 
in addition to the 

infiltration of 
mononuclear 
immune cells.  

Elevated anti-nuclear 
antibodies. 

Exist Reaching the 
highest levels 
between days 

3 and 5, 
afterwards 
reduction 

occurs. 

The intestinal 
mucosa 

The model is 
appropriate to 

various 
strains of mice. 

The induced 
skin fibrosis is 

stable. 

Needs time to 
be established. 
Severity differs 
among various 

strains 

Vinyl chloride 
(VC)-induced 

dermal fibrosis 

  Five successive IP 
injections of VC in a 

week for three 
weeks 

Fibrosis, high levels 
of collagen 
deposition 

N/A N/A N/A N/A N/A 

Hypochlorous 
(HOCL)-induced 
model of dermal 

fibrosis 

Subcutaneous 
administration of 

100 ml HOCl for six 
weeks (everyday) 

Skin and lung  
 

Elevated anti-nuclear 
antibodies. 

Exists in 
small 
renal 

arteries 

Detectable in 
the skin 
lesions 

Elevated levels 
of DNA 

topoisomerase 
I/Scl70 

Better 
investigating the 

role of 
ROS and the 

Alterations of 
immune 
response 

Chemicals 
should be 

handled with 
care. 

Needs time to 
be established. 

Growth factor 
(GF)-induced 
fibrosis model 

Subcutaneous  
injections  days of 

TGFβ/bFGF or 
CTGF for three 

concurrent  

Skin and lung in 
addition to the 
infiltration of 
mononuclear 
immune cells.  

 

N/A N/A N/A Examination of 
joint effects of 
growth factors. 
Rapid induction 
of enduring skin 

fibrosis 

Restricted to 
the study of 

growth factor-
mediated 

mechanisms. 

Sclerodermatous 
GvHD (Scl-

GVHD) fibrosis 
model 

Injection of BM or 
spleen 

hematopoietic 
progenitor cells 

into RAG2-deficient 
BALB/c mice. 

Skin thickening, 
advanced fibrosis of 

internal organs. 
Rapid immune 
activation, in 

addition to the 
dermal inflammation. 

Exist Local and 
systemic 

inflammation 
and cytokine 

release 
aberrations. 

Elevated levels 
of DNA 

topoisomerase 
I/Scl70 

The model is 
established and 

systemic 
diseases are 

readily studied. 

The 
implementation 
is complicated 
and expensive.  

DNA 
topoisomerase I 
and CFA dermal 
fibrosis model 

N/A N/A Not 
reported 

Cytokine 
perturbations 

and 
inflammation 

peaks at 8 
weeks 

DNA 
topoisomerase 

I/Scl70 

N/A N/A 
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these mutations may instruct the production of 

autoantibodies against specific antigens, such as 

HLA-DR (17).  

On the other hand, HOCl forges the production of 

Reactive Oxygen Species (ROS), generates lipid 

peroxidation, triggers posttranslational 

modifications, obliterates electron transport 

chains, bleaching heme cofactors, and tissue 

damage. These procedures can eventually 

influence persistent inflammation and dermal 

fibrosis (18). The HOCl-induced mouse models of 

skin fibrosis are recently designed inducible 

animal models and provide additional essential 

understandings of the initiating signals emanated 

from the ROS and other molecules that promote 

fibrosis. The hypochlorous acid mouse model of 

dermal fibrosis is generally induced by replicated 

intradermal injections of HOCL, which provokes 

the generation of hydroxyl radicals leading to 

augmented collagen synthesis in the skin and lung 

tissues. Furthermore, this model simulates the 

pathological alterations observed in systemic 

sclerosis (SSc) and may induce the production of 

autoantibodies such as anti-topoisomerase 

antibodies (19). Similar to the bleomycin-induced 

mouse model of dermal fibrosis HOCL-induced 

model could help assess various candidate 

molecules to prevent fibrosis (20). 

The animal model of Sclerodermatous Graft-

versus-Host Disease (Scl-GvHD)  

The transplantation of allogeneic hematopoietic 

stem cells, also called bone marrow 

transplantation, is often used as a therapeutic facet 

against hematologic malignancies. Nevertheless, 

it frequently results in dermal and systemic 

complications provoked by a GVHD reaction 

(21). The current model exhibits augmented levels 

of collagen synthesis, as demonstrated in systemic 

sclerosis. The fibrotic transformations are 

emanated by TGF-β signaling because inhibition 

of TGF-β may abolish the progression of fibrosis-

associated manifestations (22). The Scl-GVHD 

model of skin fibrosis is widely used to elucidate 

the initiating characteristics that lead to systemic 

sclerosis, the methods by which these factors 

could be managed, and is primarily derived from 

the manifestations of dermal fibrosis in patients 

suffering from chronic GVHD (10). The currently 

employed two procedures of the Scl-GVHD 

model generation in mice differ in terms of 

conditioning the recipient mice before 

transplantation. In the first method, which is 

called the standard Scl-GVHD mode, the isolated 

and prepared Hematopoietic Stem Cells (HSCs) 

are injected in sub-lethally irradiated BALB/c 

mice (21), while in the second method, which is 

called the modified Scl-GVHD model, the 

injection is performed on immunodeficient 

recombinase-activating gene 2 (RAG-2) mice 

(23). In order to study the consequences of anti-

TGFβ or latency-associated peptide treatment on 

dermal fibrosis, the Scl-GVHD model is utilized 

(24). 

Growth factor (GF)- induced model of skin 

fibrosis 

The administration of Growth Factors (GF) is also 

a method of inducing fibrosis. In addition to 

TGFβ, basic fibroblast Growth Factor (bFGF) and 

connective Tissue Growth Factor (cTGF) can 

enhance collagen synthesis in fibroblasts and act 

as prominent choices for an inducible model of 

skin fibrosis (11). The role of TGFβ as an 

essential originator and effective molecule in 

dermal fibrosis is established (25). The GF-

induced dermal fibrosis model has already been 

examined on Macrophage Chemoattractant 

Protein-1 (MCP-1)-deficient mice to scrutinize its 

pro-fibrotic role in fibrosis initiation and 

expansion (26). 

Dermal fibrosis model induced by DNA 

topoisomerase I and Freund’s complete adjuvant 

Autoimmunity is a fundamental aspect of 

systemic sclerosis, and infrequent experimenters 

have conceived models that explore this 

distinctive characteristic of its pathology (10). 

Yoshizaki et al. indicated that subcutaneous 

injection of DNA topoisomerase I and Freund’s 

complete adjuvant for eight weeks might 

stimulate fibrosis in the dermis and lung.  

It is worth mentioning that Freund’s incomplete 

adjuvant is not capable of inducing fibrosis. The 



Inducible Animal Models of Skin Fibrosis                                                                                         Bahrololoomi Z. et al.  

 

73| Jorjani Biomedicine Journal. 2022; 10(2): P 69-75. 

fibrosis induction in this model is associated with 

cytokine imbalance, including elevated levels of 

IL-4, IFNγ, IL-10, TGF-β, and TNFα (27). After 

implementing this fibrosis model, the 

Bronchoalveolar Lavage (BAL) fluid was 

investigated. The researchers discovered the 

skewed T-cell profile toward Th2 and Th17 in 

DNA topoisomerase I and Freund’s complete 

adjuvant receiving mice (10). 

Conclusion  

Animal models are practical tools for 

investigating the underlying mechanisms, genetic 

factors, and diverse characteristics required to 

establish fibrosis. These circumstances or 

components usually cannot be examined in human 

patients.  

The many results from in vitro and in vivo 

investigations would help identify new therapeutic 

targets to attenuate the fibrotic responses. An 

ideal animal model for skin fibrosis is not present, 

but several inducible models are available, 

suitable for exploring different aspects of the 

disease. Additional description of underlying 

disease mechanisms will lead to developing more 

practical skin fibrosis models. 
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