SOX2OT, a long non-coding RNA involved in autophagy regulation

Marie Saghaeian Jazi

1. Stem cell Research Center, Golestan university of Medical Sciences, Golestan, Iran/ Metabolic disorders research center, Golestan university of Medical Sciences, Golestan, Iran

Abstract
SOX2 overlapping transcript (SOX2OT) is a long non-coding RNA associated with cancer pathogenesis. It contributes to a variety of cellular functions and recent evidence propounds its association with autophagy process. It has been showed that SOX2OT can regulate the expression of different autophagy associated factors in human cells with different mechanisms, however more remains to be investigated.

Keywords: SOX2OT, lncRNA, Autophagy

Statement
Human SOX2OT, located in chromosome 3q26.3 encodes for a non-protein coding long RNA with different alternative splice variants (1). It was discovered as a gene associated with eye developmental disorders including microphthalmia and anophthalmia (2). The function of SOX2OT has been under investigation since its discovery. It has been shown that SOX2OT can regulate the embryonic stem cell in vertebrate (3) and also it has higher expression level in different tumor types taking role in pathogenesis of cancers(4).

Recently it was reported that SOX2OT can control the autophagy in osteosarchoma (5),
SOX2OT, a long non-coding RNA ... neuronal
and eye disease; however the clear
mechanism of autophagy regulation by
SOX2OT needs more investigations.

pheochromocytoma cell (6), human podocytes
cells (7). Autophagy is a conserved cellular
homeostasis mechanism under stressful
condition. It involves in pathogenesis of
different disease like infections,
neurodegenerative disease and cancer (8). Of
notice, autophagy is a fundamental process in
 lens fiber cells which SOX2OT shows high
expression level (3).

SOX2OT variant 7 overexpressed
osteosarcoma cell showed higher autophagy
associated gene expression (Atg5, Atg7 and
Beclin1), increased LC3-II/LC3-I ratio and
decreased autophagy substrate P62; indicating
SOX2OT variant 7 over expression can
induce autophagy in osteosarcoma cell lines
(U2OS and SaoS2). Overexpression of
SOX2OT in osteosarcoma cancer stem cells
contributes to stemness and Doxorubicin and
Epigallocatechin Gallate (EGCG) toxicity (5).

In a recent study in the human podocytes
exposed to hyperglycemia, it has been
reported that SOX2OT knockdown can
dercrease the Beclin-1 and Atg7 expression
level, but an increase in p62 cellular level. In
contrast, ectopic overexpression of SOX2OT
deposited autophagy induction in human
podocyte cells. It was illustrated that
SOX2OT can decrease miR-9 inhibitory
effect on SIRT-1 (autophagy inducer) by
functioning as a Competing endogenous
RNA, leading to enhanced autophagy.
Accordingly it was postulated that, SOX2OT
can attenuate human podocytes injury from
hyperglycemia through autophagy related
mechanism (7)

In other hand SOX2OT suppression can
protect pheochromocytoma cells (PC2) from
H2O2 induced injury through a mechanism
associated to autophagy inhibition. SOX2OT
knocked down PC2 cells showed less Beclin-1
overexpression and p62 decrease under
H2O2 treatment. Further investigation
showed SOX2OT knockdown mitigates
H2O2 induced injury via upregulation of miR-211 (6).

The above mentioned evidence highlights the
importance of SOX2OT function in
autophagy regulation in different conditions.
Regarding the high expression of SOX2OT in
human CNS and eye, it is worthy to study its
association with autophagy related neuronal
and eye disease; however the clear
mechanism of autophagy regulation by
SOX2OT needs more investigations.

References

How to cite: